2018-08-24 14:11:29 +02:00

174 lines
5.9 KiB
Plaintext

/*
This OpenCL kernel implements the classical Lax-Friedrichs scheme
for the shallow water equations, with edge fluxes.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Common.cu"
#include "SWECommon.cu"
#include "fluxes/LaxFriedrichs.cu"
/**
* Computes the flux along the x axis for all faces
*/
template <int block_width, int block_height>
__device__
void computeFluxF(float Q[3][block_height+2][block_width+2],
float F[3][block_height][block_width+1],
const float g_, const float dx_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
{
const int j=ty;
const int l = j + 1; //Skip ghost cells
for (int i=tx; i<block_width+1; i+=block_width) {
const int k = i;
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][l][k+1],
Q[1][l][k+1],
Q[2][l][k+1]);
const float3 Qm = make_float3(Q[0][l][k],
Q[1][l][k],
Q[2][l][k]);
// Computed flux
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
template <int block_width, int block_height>
__device__
void computeFluxG(float Q[3][block_height+2][block_width+2],
float G[3][block_height+1][block_width],
const float g_, const float dy_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
for (int j=ty; j<block_height+1; j+=block_height) {
const int l = j;
{
const int i=tx;
const int k = i + 1; //Skip ghost cells
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][l+1][k],
Q[2][l+1][k],
Q[1][l+1][k]);
const float3 Qm = make_float3(Q[0][l][k],
Q[2][l][k],
Q[1][l][k]);
// Computed flux
// Note that we swap back
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__
void LxFKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_) {
const int block_width = BLOCK_WIDTH;
const int block_height = BLOCK_HEIGHT;
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 1; //Skip global ghost cells, i.e., +1
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 1;
__shared__ float Q[3][block_height+2][block_width+2];
__shared__ float F[3][block_height][block_width+1];
__shared__ float G[3][block_height+1][block_width];
//Read into shared memory
readBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2>(h0_ptr_, h0_pitch_, Q[0], nx_+1, ny_+1);
readBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2>(hu0_ptr_, hu0_pitch_, Q[1], nx_+1, ny_+1);
readBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2>(hv0_ptr_, hv0_pitch_, Q[2], nx_+1, ny_+1);
__syncthreads();
//Set boundary conditions
noFlowBoundary1(Q, nx_, ny_);
__syncthreads();
//Compute fluxes along the x and y axis
computeFluxF<block_width, block_height>(Q, F, g_, dx_, dt_);
computeFluxG<block_width, block_height>(Q, G, g_, dy_, dt_);
__syncthreads();
//Evolve for all internal cells
if (ti > 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
const float h1 = Q[0][j][i] + (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
const float hu1 = Q[1][j][i] + (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
const float hv1 = Q[2][j][i] + (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
h_row[ti] = h1;
hu_row[ti] = hu1;
hv_row[ti] = hv1;
}
}
} // extern "C"