FiniteVolumeGPU/SWESimulators/KP07_dimsplit_kernel.cu
2018-08-13 16:10:25 +02:00

225 lines
8.2 KiB
Plaintext

/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.cu"
#include "limiters.cu"
#include "fluxes/CentralUpwind.cu"
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_, const float dx_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
{
int j=ty;
const int l = j + 2; //Skip ghost cells
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
const int k = i + 1;
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float3 Q_rl = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
const float3 Q_rr = make_float3(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1]);
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qx[0][j][i],
Q[1][l][k] - 0.5f*Qx[1][j][i],
Q[2][l][k] - 0.5f*Qx[2][j][i]);
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qx[0][j][i],
Q[1][l][k] + 0.5f*Qx[1][j][i],
Q[2][l][k] + 0.5f*Qx[2][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_, const float dy_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
const int l = j + 1;
{
int i=tx;
const int k = i + 2; //Skip ghost cells
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float3 Q_rl = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
const float3 Q_rr = make_float3(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i]);
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qy[0][j][i],
Q[2][l][k] - 0.5f*Qy[2][j][i],
Q[1][l][k] - 0.5f*Qy[1][j][i]);
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qy[0][j][i],
Q[2][l][k] + 0.5f*Qy[2][j][i],
Q[1][l][k] + 0.5f*Qy[1][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07DimsplitKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
int step_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_) {
//Shared memory variables
__shared__ float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4];
__shared__ float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
__shared__ float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
//Read into shared memory
readBlock2(h0_ptr_, h0_pitch_,
hu0_ptr_, hu0_pitch_,
hv0_ptr_, hv0_pitch_,
Q, nx_, ny_);
__syncthreads();
//Fix boundary conditions
noFlowBoundary2(Q, nx_, ny_);
__syncthreads();
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF2(Q, F, nx_, ny_, dx_, dt_);
__syncthreads();
//Set boundary conditions
noFlowBoundary2(Q, nx_, ny_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG2(Q, F, nx_, ny_, dy_, dt_);
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
minmodSlopeY(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG2(Q, F, nx_, ny_, dy_, dt_);
__syncthreads();
//Set boundary conditions
noFlowBoundary2(Q, nx_, ny_);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF2(Q, F, nx_, ny_, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
writeBlock2(h1_ptr_, h1_pitch_,
hu1_ptr_, hu1_pitch_,
hv1_ptr_, hv1_pitch_,
Q, nx_, ny_);
}
} // extern "C"