mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-11-27 23:29:49 +01:00
143 lines
5.0 KiB
Plaintext
143 lines
5.0 KiB
Plaintext
/*
|
|
This OpenCL kernel implements the classical Lax-Friedrichs scheme
|
|
for the shallow water equations, with edge fluxes.
|
|
|
|
Copyright (C) 2016 SINTEF ICT
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "include/SWECommon.h"
|
|
#include "include/common.h"
|
|
#include <hip/hip_runtime.h>
|
|
|
|
/**
|
|
* Computes the flux along the x-axis for all faces
|
|
*/
|
|
__device__ void computeFluxF(float Q[3][BLOCK_HEIGHT + 2][BLOCK_WIDTH + 2],
|
|
float F[3][BLOCK_HEIGHT + 2][BLOCK_WIDTH + 2],
|
|
const float g_, const float dx_, const float dt_) {
|
|
// Compute fluxes along the x-axis
|
|
for (unsigned int j = threadIdx.y; j < BLOCK_HEIGHT + 2; j += BLOCK_HEIGHT) {
|
|
for (unsigned int i = threadIdx.x; i < BLOCK_WIDTH + 1; i += BLOCK_WIDTH) {
|
|
// Q at interface from the right and left
|
|
const float3 Qp =
|
|
make_float3(Q[0][j][i + 1], Q[1][j][i + 1], Q[2][j][i + 1]);
|
|
const float3 Qm = make_float3(Q[0][j][i], Q[1][j][i], Q[2][j][i]);
|
|
|
|
// Computed flux
|
|
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dx_, dt_);
|
|
F[0][j][i] = flux.x;
|
|
F[1][j][i] = flux.y;
|
|
F[2][j][i] = flux.z;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Computes the flux along the y axis for all faces
|
|
*/
|
|
__device__ void computeFluxG(float Q[3][BLOCK_HEIGHT + 2][BLOCK_WIDTH + 2],
|
|
float G[3][BLOCK_HEIGHT + 2][BLOCK_WIDTH + 2],
|
|
const float g_, const float dy_, const float dt_) {
|
|
// Compute fluxes along the y axis
|
|
for (unsigned int j = threadIdx.y; j < BLOCK_HEIGHT + 1; j += BLOCK_HEIGHT) {
|
|
for (unsigned int i = threadIdx.x; i < BLOCK_WIDTH + 2; i += BLOCK_WIDTH) {
|
|
// Q at interface from the right and left
|
|
// Note that we swap hu and hv
|
|
const float3 Qp =
|
|
make_float3(Q[0][j + 1][i], Q[2][j + 1][i], Q[1][j + 1][i]);
|
|
const float3 Qm = make_float3(Q[0][j][i], Q[2][j][i], Q[1][j][i]);
|
|
|
|
// Computed flux
|
|
// Note that we swap back
|
|
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dy_, dt_);
|
|
G[0][j][i] = flux.x;
|
|
G[1][j][i] = flux.z;
|
|
G[2][j][i] = flux.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" {
|
|
__global__ void
|
|
FORCEKernel(const int nx_, const int ny_, const float dx_, const float dy_,
|
|
const float dt_, const float g_,
|
|
|
|
const int boundary_conditions_,
|
|
|
|
// Input h^n
|
|
float *h0_ptr_, const int h0_pitch_, float *hu0_ptr_,
|
|
const int hu0_pitch_, float *hv0_ptr_, const int hv0_pitch_,
|
|
|
|
// Output h^{n+1}
|
|
float *h1_ptr_, const int h1_pitch_, float *hu1_ptr_,
|
|
const int hu1_pitch_, float *hv1_ptr_, const int hv1_pitch_,
|
|
|
|
// Output CFL
|
|
float *cfl_,
|
|
|
|
// Subarea of internal domain to compute
|
|
const int x0 = 0, const int y0 = 0, int x1 = 0, int y1 = 0) {
|
|
if (x1 == 0)
|
|
x1 = nx_;
|
|
|
|
if (y1 == 0)
|
|
y1 = ny_;
|
|
|
|
constexpr unsigned int w = BLOCK_WIDTH;
|
|
constexpr unsigned int h = BLOCK_HEIGHT;
|
|
constexpr unsigned int gc_x = 1;
|
|
constexpr unsigned int gc_y = 1;
|
|
constexpr unsigned int vars = 3;
|
|
|
|
__shared__ float Q[vars][h + 2 * gc_y][w + 2 * gc_x];
|
|
__shared__ float F[vars][h + 2 * gc_y][w + 2 * gc_x];
|
|
|
|
// Read into shared memory
|
|
readBlock<w, h, gc_x, gc_y, 1, 1>(h0_ptr_, h0_pitch_, Q[0], nx_, ny_,
|
|
boundary_conditions_, x0, y0, x1, y1);
|
|
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_,
|
|
boundary_conditions_, x0, y0, x1, y1);
|
|
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_,
|
|
boundary_conditions_, x0, y0, x1, y1);
|
|
__syncthreads();
|
|
|
|
// Compute flux along x, and evolve
|
|
computeFluxF(Q, F, g_, dx_, dt_);
|
|
__syncthreads();
|
|
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
|
__syncthreads();
|
|
|
|
// Compute flux along y, and evolve
|
|
computeFluxG(Q, F, g_, dy_, dt_);
|
|
__syncthreads();
|
|
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
|
__syncthreads();
|
|
|
|
// Write to main memory
|
|
writeBlock<w, h, gc_x, gc_y>(h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0,
|
|
x1, y1);
|
|
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1, x0,
|
|
y0, x1, y1);
|
|
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1, x0,
|
|
y0, x1, y1);
|
|
|
|
// Compute the CFL for this block
|
|
if (cfl_ != nullptr) {
|
|
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
|
}
|
|
}
|
|
} // extern "C"
|