mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-11-27 23:29:49 +01:00
177 lines
5.9 KiB
Plaintext
177 lines
5.9 KiB
Plaintext
/*
|
|
This OpenCL kernel implements the classical Lax-Friedrichs scheme
|
|
for the shallow water equations, with edge fluxes.
|
|
|
|
Copyright (C) 2016 SINTEF ICT
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include "common.h"
|
|
#include "SWECommon.h"
|
|
|
|
|
|
/**
|
|
* Computes the flux along the x-axis for all faces
|
|
*/
|
|
template<int block_width, int block_height>
|
|
__device__
|
|
void computeFluxF(float Q[3][block_height + 2][block_width + 2],
|
|
float F[3][block_height][block_width + 1],
|
|
const float g_, const float dx_, const float dt_) {
|
|
{
|
|
// Index of thread within block
|
|
const unsigned int tx = threadIdx.x;
|
|
const unsigned int ty = threadIdx.y;
|
|
const unsigned int j = ty;
|
|
const unsigned int l = j + 1; // Skip ghost cells
|
|
|
|
for (unsigned int i = tx; i < block_width + 1; i += block_width) {
|
|
const unsigned int k = i;
|
|
|
|
// Q at interface from the right and left
|
|
const float3 Qp = make_float3(Q[0][l][k + 1],
|
|
Q[1][l][k + 1],
|
|
Q[2][l][k + 1]);
|
|
const float3 Qm = make_float3(Q[0][l][k],
|
|
Q[1][l][k],
|
|
Q[2][l][k]);
|
|
|
|
// Computed flux
|
|
const auto [x, y, z] = LxF_2D_flux(Qm, Qp, g_, dx_, dt_);
|
|
F[0][j][i] = x;
|
|
F[1][j][i] = y;
|
|
F[2][j][i] = z;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Computes the flux along the y-axis for all faces
|
|
*/
|
|
template<int block_width, int block_height>
|
|
__device__
|
|
void computeFluxG(float Q[3][block_height + 2][block_width + 2],
|
|
float G[3][block_height + 1][block_width],
|
|
const float g_, const float dy_, const float dt_) {
|
|
// Index of thread within block
|
|
const unsigned int tx = threadIdx.x;
|
|
const unsigned int ty = threadIdx.y;
|
|
|
|
for (unsigned int j = ty; j < block_height + 1; j += block_height) {
|
|
const unsigned int l = j;
|
|
{
|
|
const unsigned int i = tx;
|
|
const unsigned int k = i + 1; // Skip ghost cells
|
|
|
|
// Q at interface from the right and left
|
|
// Note that we swap hu and hv
|
|
const float3 Qp = make_float3(Q[0][l + 1][k],
|
|
Q[2][l + 1][k],
|
|
Q[1][l + 1][k]);
|
|
const float3 Qm = make_float3(Q[0][l][k],
|
|
Q[2][l][k],
|
|
Q[1][l][k]);
|
|
|
|
// Computed flux
|
|
// Note that we swap back
|
|
const auto [x, y, z] = LxF_2D_flux(Qm, Qp, g_, dy_, dt_);
|
|
G[0][j][i] = x;
|
|
G[1][j][i] = z;
|
|
G[2][j][i] = y;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern "C" {
|
|
__global__
|
|
void LxFKernel(
|
|
const int nx_, const int ny_,
|
|
const float dx_, const float dy_, const float dt_,
|
|
const float g_,
|
|
|
|
const int boundary_conditions_,
|
|
|
|
// Input h^n
|
|
float *h0_ptr_, const int h0_pitch_,
|
|
float *hu0_ptr_, const int hu0_pitch_,
|
|
float *hv0_ptr_, const int hv0_pitch_,
|
|
|
|
// Output h^{n+1}
|
|
float *h1_ptr_, const int h1_pitch_,
|
|
float *hu1_ptr_, const int hu1_pitch_,
|
|
float *hv1_ptr_, const int hv1_pitch_,
|
|
|
|
// Output CFL
|
|
float *cfl_,
|
|
|
|
// Subarea of internal domain to compute
|
|
const int x0 = 0, const int y0 = 0,
|
|
int x1 = 0, int y1 = 0) {
|
|
if (x1 == 0)
|
|
x1 = nx_;
|
|
|
|
if (y1 == 0)
|
|
y1 = ny_;
|
|
|
|
constexpr unsigned int w = BLOCK_WIDTH;
|
|
constexpr unsigned int h = BLOCK_HEIGHT;
|
|
constexpr unsigned int gc_x = 1;
|
|
constexpr unsigned int gc_y = 1;
|
|
constexpr unsigned int vars = 3;
|
|
|
|
__shared__ float Q[vars][h + 2][w + 2];
|
|
__shared__ float F[vars][h][w + 1];
|
|
__shared__ float G[vars][h + 1][w];
|
|
|
|
// Read from global memory
|
|
readBlock<w, h, gc_x, gc_y, 1, 1>(h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
|
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
|
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
|
|
|
// Compute fluxes along the x and y axis
|
|
computeFluxF<w, h>(Q, F, g_, dx_, dt_);
|
|
computeFluxG<w, h>(Q, G, g_, dy_, dt_);
|
|
__syncthreads();
|
|
|
|
// Evolve for all cells
|
|
const unsigned int tx = threadIdx.x;
|
|
const unsigned int ty = threadIdx.y;
|
|
const unsigned int i = tx + 1; // Skip local ghost cells, i.e., +1
|
|
const unsigned int j = ty + 1;
|
|
|
|
Q[0][j][i] += (F[0][ty][tx] - F[0][ty][tx + 1]) * dt_ / dx_
|
|
+ (G[0][ty][tx] - G[0][ty + 1][tx]) * dt_ / dy_;
|
|
Q[1][j][i] += (F[1][ty][tx] - F[1][ty][tx + 1]) * dt_ / dx_
|
|
+ (G[1][ty][tx] - G[1][ty + 1][tx]) * dt_ / dy_;
|
|
Q[2][j][i] += (F[2][ty][tx] - F[2][ty][tx + 1]) * dt_ / dx_
|
|
+ (G[2][ty][tx] - G[2][ty + 1][tx]) * dt_ / dy_;
|
|
__syncthreads();
|
|
|
|
// Write to main memory
|
|
writeBlock<w, h, gc_x, gc_y>(h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
|
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
|
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
|
|
|
// Compute the CFL for this block
|
|
if (cfl_ != nullptr) {
|
|
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
|
}
|
|
}
|
|
} // extern "C"
|
|
|