FiniteVolumeGPU/GPUSimulators/EE2D_KP07_dimsplit.py
2025-02-14 12:40:31 +01:00

276 lines
11 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the 2nd order HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
from pycuda import gpuarray
class EE2D_KP07_dimsplit (BaseSimulator):
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
def __init__(self,
context,
rho, rho_u, rho_v, E,
nx, ny,
dx, dy,
g,
gamma,
theta=1.3,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=8):
"""
Initialization routine
Args:
rho: Density
rho_u: Momentum along x-axis
rho_v: Momentum along y-axis
E: energy
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis
dy: Grid cell spacing along y-axis
dt: Size of each timestep
g: Gravitational constant
gamma: Gas constant
p: pressure
"""
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
2,
block_width, block_height)
self.g = np.float32(g)
self.gamma = np.float32(gamma)
self.theta = np.float32(theta)
#Get kernels
module = context.get_module("cuda/EE2D_KP07_dimsplit.cu",
defines={
'BLOCK_WIDTH': self.block_size[0],
'BLOCK_HEIGHT': self.block_size[1]
},
compile_args={
'no_extern_c': True,
'options': ["--use_fast_math"],
},
jit_compile_args={})
self.kernel = module.get_function("KP07DimsplitKernel")
self.kernel.prepare("iiffffffiiPiPiPiPiPiPiPiPiPiiii")
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[rho, rho_u, rho_v, E])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[None, None, None, None])
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
dt_x = np.min(self.dx / (np.abs(rho_u/rho) + np.sqrt(gamma*rho)))
dt_y = np.min(self.dy / (np.abs(rho_v/rho) + np.sqrt(gamma*rho)))
self.dt = min(dt_x, dt_y)
self.cfl_data.fill(self.dt, stream=self.stream)
def substep(self, dt, step_number, external=True, internal=True):
self.substepDimsplit(0.5*dt, step_number, external, internal)
def substepDimsplit(self, dt, substep, external, internal):
if external and internal:
#print("COMPLETE DOMAIN (dt=" + str(dt) + ")")
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, 0,
self.nx, self.ny)
return
if external and not internal:
###################################
# XXX: Corners are treated twice! #
###################################
ns_grid_size = (self.grid_size[0], 1)
# NORTH
# (x0, y0) x (x1, y1)
# (0, ny-y_halo) x (nx, ny)
self.kernel.prepared_async_call(ns_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, self.ny - int(self.u0[0].y_halo),
self.nx, self.ny)
# SOUTH
# (x0, y0) x (x1, y1)
# (0, 0) x (nx, y_halo)
self.kernel.prepared_async_call(ns_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, 0,
self.nx, int(self.u0[0].y_halo))
we_grid_size = (1, self.grid_size[1])
# WEST
# (x0, y0) x (x1, y1)
# (0, 0) x (x_halo, ny)
self.kernel.prepared_async_call(we_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, 0,
int(self.u0[0].x_halo), self.ny)
# EAST
# (x0, y0) x (x1, y1)
# (nx-x_halo, 0) x (nx, ny)
self.kernel.prepared_async_call(we_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
self.nx - int(self.u0[0].x_halo), 0,
self.nx, self.ny)
return
if internal and not external:
# INTERNAL DOMAIN
# (x0, y0) x (x1, y1)
# (x_halo, y_halo) x (nx - x_halo, ny - y_halo)
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.internal_stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
int(self.u0[0].x_halo), int(self.u0[0].y_halo),
self.nx - int(self.u0[0].x_halo), self.ny - int(self.u0[0].y_halo))
return
def swapBuffers(self):
self.u0, self.u1 = self.u1, self.u0
return
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
return
def computeDt(self):
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
return max_dt*0.5