mirror of
				https://github.com/smyalygames/FiniteVolumeGPU.git
				synced 2025-10-31 19:17:40 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			190 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			190 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| """
 | |
| This python module implements the classical Lax-Friedrichs numerical
 | |
| scheme for the shallow water equations
 | |
| 
 | |
| Copyright (C) 2016  SINTEF ICT
 | |
| 
 | |
| This program is free software: you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation, either version 3 of the License, or
 | |
| (at your option) any later version.
 | |
| 
 | |
| This program is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
| """
 | |
| 
 | |
| #Import packages we need
 | |
| import numpy as np
 | |
| import logging
 | |
| 
 | |
| import pycuda.compiler as cuda_compiler
 | |
| import pycuda.gpuarray
 | |
| import pycuda.driver as cuda
 | |
| 
 | |
| from GPUSimulators import Common
 | |
| 
 | |
| 
 | |
| class BaseSimulator:
 | |
|     """
 | |
|     Initialization routine
 | |
|     context: GPU context to use
 | |
|     kernel_wrapper: wrapper function of GPU kernel
 | |
|     h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
 | |
|     hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
 | |
|     hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
 | |
|     nx: Number of cells along x-axis
 | |
|     ny: Number of cells along y-axis
 | |
|     dx: Grid cell spacing along x-axis (20 000 m)
 | |
|     dy: Grid cell spacing along y-axis (20 000 m)
 | |
|     dt: Size of each timestep (90 s)
 | |
|     g: Gravitational accelleration (9.81 m/s^2)
 | |
|     """
 | |
|     def __init__(self, \
 | |
|                  context, \
 | |
|                  nx, ny, \
 | |
|                  dx, dy, dt, \
 | |
|                  g, \
 | |
|                  block_width, block_height):
 | |
|         #Get logger
 | |
|         self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
 | |
|         
 | |
|         self.context = context
 | |
|         
 | |
|         if (self.context.autotuner):
 | |
|             peak_configuration = self.context.autotuner.get_peak_performance(self.__class__)
 | |
|             block_width = int(peak_configuration["block_width"])
 | |
|             block_height = int(peak_configuration["block_height"])
 | |
|             self.logger.debug("Used autotuning to get block size [%d x %d]", block_width, block_height)
 | |
|         
 | |
|         #Create a CUDA stream
 | |
|         self.stream = cuda.Stream()
 | |
|                            
 | |
|         #Save input parameters
 | |
|         #Notice that we need to specify them in the correct dataformat for the
 | |
|         #GPU kernel
 | |
|         self.nx = np.int32(nx)
 | |
|         self.ny = np.int32(ny)
 | |
|         self.dx = np.float32(dx)
 | |
|         self.dy = np.float32(dy)
 | |
|         self.dt = np.float32(dt)
 | |
|         self.g = np.float32(g) 
 | |
|         
 | |
|         #Keep track of simulation time
 | |
|         self.t = 0.0;
 | |
|                             
 | |
|         #Compute kernel launch parameters
 | |
|         self.local_size = (block_width, block_height, 1) 
 | |
|         self.global_size = ( \
 | |
|                        int(np.ceil(self.nx / float(self.local_size[0]))), \
 | |
|                        int(np.ceil(self.ny / float(self.local_size[1]))) \
 | |
|                       )
 | |
|                       
 | |
|     """
 | |
|     Function which simulates forward in time using the default simulation type
 | |
|     """
 | |
|     def simulate(self, t_end):
 | |
|         raise(exceptions.NotImplementedError("Needs to be implemented in subclass"))
 | |
|                       
 | |
|     """ 
 | |
|     Function which simulates t_end seconds using forward Euler
 | |
|     Requires that the stepEuler functionality is implemented in the subclasses
 | |
|     """
 | |
|     def simulateEuler(self, t_end):
 | |
|         with Common.Timer(self.__class__.__name__ + ".simulateEuler") as t:
 | |
|             # Compute number of timesteps to perform
 | |
|             n = int(t_end / self.dt + 1)
 | |
|             
 | |
|             for i in range(0, n):
 | |
|                 # Compute timestep for "this" iteration
 | |
|                 local_dt = np.float32(min(self.dt, t_end-i*self.dt))
 | |
|                 
 | |
|                 # Stop if end reached (should not happen)
 | |
|                 if (local_dt <= 0.0):
 | |
|                     break
 | |
|             
 | |
|                 # Step with forward Euler 
 | |
|                 self.stepEuler(local_dt)
 | |
|             
 | |
|         self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, n, t.secs)
 | |
|         return self.t, n
 | |
|         
 | |
|     """
 | |
|     Function which simulates t_end seconds using Runge-Kutta 2
 | |
|     Requires that the stepRK functionality is implemented in the subclasses
 | |
|     """
 | |
|     def simulateRK(self, t_end, order):
 | |
|         with Common.Timer(self.__class__.__name__ + ".simulateRK") as t:
 | |
|             # Compute number of timesteps to perform
 | |
|             n = int(t_end / self.dt + 1)
 | |
|             
 | |
|             for i in range(0, n):
 | |
|                 # Compute timestep for "this" iteration
 | |
|                 local_dt = np.float32(min(self.dt, t_end-i*self.dt))
 | |
|                 
 | |
|                 # Stop if end reached (should not happen)
 | |
|                 if (local_dt <= 0.0):
 | |
|                     break
 | |
|             
 | |
|                 # Perform all the Runge-Kutta substeps
 | |
|                 self.stepRK(local_dt, order)
 | |
|             
 | |
|         self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, n, t.secs)
 | |
|         return self.t, n
 | |
|         
 | |
|     """
 | |
|     Function which simulates t_end seconds using second order dimensional splitting (XYYX)
 | |
|     Requires that the stepDimsplitX and stepDimsplitY functionality is implemented in the subclasses
 | |
|     """
 | |
|     def simulateDimsplit(self, t_end):
 | |
|         with Common.Timer(self.__class__.__name__ + ".simulateDimsplit") as t:
 | |
|             # Compute number of timesteps to perform
 | |
|             n = int(t_end / (2.0*self.dt) + 1)
 | |
|             
 | |
|             for i in range(0, n):
 | |
|                 # Compute timestep for "this" iteration
 | |
|                 local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt))
 | |
|                 
 | |
|                 # Stop if end reached (should not happen)
 | |
|                 if (local_dt <= 0.0):
 | |
|                     break
 | |
|                 
 | |
|                 # Perform the dimensional split substeps
 | |
|                 self.stepDimsplitXY(local_dt)
 | |
|                 self.stepDimsplitYX(local_dt)
 | |
|             
 | |
|         self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, 2*n, t.secs)
 | |
|         return self.t, 2*n
 | |
|         
 | |
|     
 | |
|     """
 | |
|     Function which performs one single timestep of size dt using forward euler
 | |
|     """
 | |
|     def stepEuler(self, dt):
 | |
|         raise(NotImplementedError("Needs to be implemented in subclass"))
 | |
|         
 | |
|     def stepRK(self, dt, substep):
 | |
|         raise(NotImplementedError("Needs to be implemented in subclass"))
 | |
|     
 | |
|     def stepDimsplitXY(self, dt):
 | |
|         raise(NotImplementedError("Needs to be implemented in subclass"))
 | |
|         
 | |
|     def stepDimsplitYX(self, dt):
 | |
|         raise(NotImplementedError("Needs to be implemented in subclass"))
 | |
|         
 | |
|     def sim_time(self):
 | |
|         return self.t
 | |
| 
 | |
|     def download(self):
 | |
|         raise(NotImplementedError("Needs to be implemented in subclass"))
 | |
|         
 | |
|     def synchronize(self):
 | |
|         self.stream.synchronize()
 | |
| 
 | 
