2018-08-23 21:12:48 +02:00

190 lines
7.0 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the classical Lax-Friedrichs numerical
scheme for the shallow water equations
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
import numpy as np
import logging
import pycuda.compiler as cuda_compiler
import pycuda.gpuarray
import pycuda.driver as cuda
from GPUSimulators import Common
class BaseSimulator:
"""
Initialization routine
context: GPU context to use
kernel_wrapper: wrapper function of GPU kernel
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def __init__(self, \
context, \
nx, ny, \
dx, dy, dt, \
g, \
block_width, block_height):
#Get logger
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
self.context = context
if (self.context.autotuner):
peak_configuration = self.context.autotuner.get_peak_performance(self.__class__)
block_width = int(peak_configuration["block_width"])
block_height = int(peak_configuration["block_height"])
self.logger.debug("Used autotuning to get block size [%d x %d]", block_width, block_height)
#Create a CUDA stream
self.stream = cuda.Stream()
#Save input parameters
#Notice that we need to specify them in the correct dataformat for the
#GPU kernel
self.nx = np.int32(nx)
self.ny = np.int32(ny)
self.dx = np.float32(dx)
self.dy = np.float32(dy)
self.dt = np.float32(dt)
self.g = np.float32(g)
#Keep track of simulation time
self.t = 0.0;
#Compute kernel launch parameters
self.local_size = (block_width, block_height, 1)
self.global_size = ( \
int(np.ceil(self.nx / float(self.local_size[0]))), \
int(np.ceil(self.ny / float(self.local_size[1]))) \
)
"""
Function which simulates forward in time using the default simulation type
"""
def simulate(self, t_end):
raise(exceptions.NotImplementedError("Needs to be implemented in subclass"))
"""
Function which simulates t_end seconds using forward Euler
Requires that the stepEuler functionality is implemented in the subclasses
"""
def simulateEuler(self, t_end):
with Common.Timer(self.__class__.__name__ + ".simulateEuler") as t:
# Compute number of timesteps to perform
n = int(t_end / self.dt + 1)
for i in range(0, n):
# Compute timestep for "this" iteration
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
# Stop if end reached (should not happen)
if (local_dt <= 0.0):
break
# Step with forward Euler
self.stepEuler(local_dt)
self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, n, t.secs)
return self.t, n
"""
Function which simulates t_end seconds using Runge-Kutta 2
Requires that the stepRK functionality is implemented in the subclasses
"""
def simulateRK(self, t_end, order):
with Common.Timer(self.__class__.__name__ + ".simulateRK") as t:
# Compute number of timesteps to perform
n = int(t_end / self.dt + 1)
for i in range(0, n):
# Compute timestep for "this" iteration
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
# Stop if end reached (should not happen)
if (local_dt <= 0.0):
break
# Perform all the Runge-Kutta substeps
self.stepRK(local_dt, order)
self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, n, t.secs)
return self.t, n
"""
Function which simulates t_end seconds using second order dimensional splitting (XYYX)
Requires that the stepDimsplitX and stepDimsplitY functionality is implemented in the subclasses
"""
def simulateDimsplit(self, t_end):
with Common.Timer(self.__class__.__name__ + ".simulateDimsplit") as t:
# Compute number of timesteps to perform
n = int(t_end / (2.0*self.dt) + 1)
for i in range(0, n):
# Compute timestep for "this" iteration
local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt))
# Stop if end reached (should not happen)
if (local_dt <= 0.0):
break
# Perform the dimensional split substeps
self.stepDimsplitXY(local_dt)
self.stepDimsplitYX(local_dt)
self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, 2*n, t.secs)
return self.t, 2*n
"""
Function which performs one single timestep of size dt using forward euler
"""
def stepEuler(self, dt):
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepRK(self, dt, substep):
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepDimsplitXY(self, dt):
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepDimsplitYX(self, dt):
raise(NotImplementedError("Needs to be implemented in subclass"))
def sim_time(self):
return self.t
def download(self):
raise(NotImplementedError("Needs to be implemented in subclass"))
def synchronize(self):
self.stream.synchronize()