mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 22:44:12 +02:00
547 lines
15 KiB
C++
547 lines
15 KiB
C++
/*
|
|
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
|
for the shallow water equations, described in
|
|
A. Kurganov & Guergana Petrova
|
|
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
|
Scheme for the Saint-Venant System Communications in Mathematical
|
|
Sciences, 5 (2007), 133-160.
|
|
|
|
Copyright (C) 2016 SINTEF ICT
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
|
|
/**
|
|
* Float3 operators
|
|
*/
|
|
inline __device__ float3 operator*(const float a, const float3 b) {
|
|
return make_float3(a*b.x, a*b.y, a*b.z);
|
|
}
|
|
|
|
inline __device__ float3 operator/(const float3 a, const float b) {
|
|
return make_float3(a.x/b, a.y/b, a.z/b);
|
|
}
|
|
|
|
inline __device__ float3 operator-(const float3 a, const float3 b) {
|
|
return make_float3(a.x-b.x, a.y-b.y, a.z-b.z);
|
|
}
|
|
|
|
inline __device__ float3 operator+(const float3 a, const float3 b) {
|
|
return make_float3(a.x+b.x, a.y+b.y, a.z+b.z);
|
|
}
|
|
|
|
/**
|
|
* Float4 operators
|
|
*/
|
|
inline __device__ float4 operator*(const float a, const float4 b) {
|
|
return make_float4(a*b.x, a*b.y, a*b.z, a*b.w);
|
|
}
|
|
|
|
inline __device__ float4 operator/(const float4 a, const float b) {
|
|
return make_float4(a.x/b, a.y/b, a.z/b, a.w/b);
|
|
}
|
|
|
|
inline __device__ float4 operator-(const float4 a, const float4 b) {
|
|
return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
|
|
}
|
|
|
|
inline __device__ float4 operator+(const float4 a, const float4 b) {
|
|
return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
|
|
}
|
|
|
|
|
|
|
|
|
|
inline __device__ __host__ float clamp(const float f, const float a, const float b) {
|
|
return fmaxf(a, fminf(f, b));
|
|
}
|
|
|
|
inline __device__ __host__ int clamp(const int f, const int a, const int b) {
|
|
return (f < b) ? ( (f > a) ? f : a) : b;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
__device__ float desingularize(float x_, float eps_) {
|
|
return copysign(1.0f, x_)*fmaxf(fabsf(x_), fminf(x_*x_/(2.0f*eps_)+0.5f*eps_, eps_));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Returns the step stored in the leftmost 16 bits
|
|
* of the 32 bit step-order integer
|
|
*/
|
|
inline __device__ int getStep(int step_order_) {
|
|
return step_order_ >> 16;
|
|
}
|
|
|
|
/**
|
|
* Returns the order stored in the rightmost 16 bits
|
|
* of the 32 bit step-order integer
|
|
*/
|
|
inline __device__ int getOrder(int step_order_) {
|
|
return step_order_ & 0x0000FFFF;
|
|
}
|
|
|
|
|
|
enum BoundaryCondition {
|
|
Dirichlet = 0,
|
|
Neumann = 1,
|
|
Periodic = 2,
|
|
Reflective = 3
|
|
};
|
|
|
|
inline __device__ BoundaryCondition getBCNorth(int bc_) {
|
|
return static_cast<BoundaryCondition>((bc_ >> 24) & 0x0000000F);
|
|
}
|
|
|
|
inline __device__ BoundaryCondition getBCSouth(int bc_) {
|
|
return static_cast<BoundaryCondition>((bc_ >> 16) & 0x0000000F);
|
|
}
|
|
|
|
inline __device__ BoundaryCondition getBCEast(int bc_) {
|
|
return static_cast<BoundaryCondition>((bc_ >> 8) & 0x0000000F);
|
|
}
|
|
|
|
inline __device__ BoundaryCondition getBCWest(int bc_) {
|
|
return static_cast<BoundaryCondition>((bc_ >> 0) & 0x0000000F);
|
|
}
|
|
|
|
|
|
// West boundary
|
|
template<int w, int h, int gc_x, int gc_y, int sign>
|
|
__device__ void bcWestReflective(float Q[h+2*gc_y][w+2*gc_x],
|
|
const int nx_, const int ny_) {
|
|
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
|
const int i = threadIdx.x + gc_x;
|
|
const int ti = blockDim.x*blockIdx.x + i;
|
|
|
|
if (gc_x >= 1 && ti == gc_x) {
|
|
Q[j][i-1] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 2 && ti == gc_x + 1) {
|
|
Q[j][i-3] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 3 && ti == gc_x + 2) {
|
|
Q[j][i-5] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 4 && ti == gc_x + 3) {
|
|
Q[j][i-7] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 5 && ti == gc_x + 4) {
|
|
Q[j][i-9] = sign*Q[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// East boundary
|
|
template<int w, int h, int gc_x, int gc_y, int sign>
|
|
__device__ void bcEastReflective(float Q[h+2*gc_y][w+2*gc_x],
|
|
const int nx_, const int ny_) {
|
|
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
|
const int i = threadIdx.x + gc_x;
|
|
const int ti = blockDim.x*blockIdx.x + i;
|
|
|
|
if (gc_x >= 1 && ti == nx_ + gc_x - 1) {
|
|
Q[j][i+1] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 2 && ti == nx_ + gc_x - 2) {
|
|
Q[j][i+3] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 3 && ti == nx_ + gc_x - 3) {
|
|
Q[j][i+5] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 4 && ti == nx_ + gc_x - 4) {
|
|
Q[j][i+7] = sign*Q[j][i];
|
|
}
|
|
if (gc_x >= 5 && ti == nx_ + gc_x - 5) {
|
|
Q[j][i+9] = sign*Q[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// South boundary
|
|
template<int w, int h, int gc_x, int gc_y, int sign>
|
|
__device__ void bcSouthReflective(float Q[h+2*gc_y][w+2*gc_x],
|
|
const int nx_, const int ny_) {
|
|
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
|
const int j = threadIdx.y + gc_y;
|
|
const int tj = blockDim.y*blockIdx.y + j;
|
|
|
|
if (gc_y >= 1 && tj == gc_y) {
|
|
Q[j-1][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 2 && tj == gc_y + 1) {
|
|
Q[j-3][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 3 && tj == gc_y + 2) {
|
|
Q[j-5][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 4 && tj == gc_y + 3) {
|
|
Q[j-7][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 5 && tj == gc_y + 4) {
|
|
Q[j-9][i] = sign*Q[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// North boundary
|
|
template<int w, int h, int gc_x, int gc_y, int sign>
|
|
__device__ void bcNorthReflective(float Q[h+2*gc_y][w+2*gc_x], const int nx_, const int ny_) {
|
|
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
|
const int j = threadIdx.y + gc_y;
|
|
const int tj = blockDim.y*blockIdx.y + j;
|
|
|
|
if (gc_y >= 1 && tj == ny_ + gc_y - 1) {
|
|
Q[j+1][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 2 && tj == ny_ + gc_y - 2) {
|
|
Q[j+3][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 3 && tj == ny_ + gc_y - 3) {
|
|
Q[j+5][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 4 && tj == ny_ + gc_y - 4) {
|
|
Q[j+7][i] = sign*Q[j][i];
|
|
}
|
|
if (gc_y >= 5 && tj == ny_ + gc_y - 5) {
|
|
Q[j+9][i] = sign*Q[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Alter the index l so that it gives periodic boundary conditions when reading
|
|
*/
|
|
template<int gc_x>
|
|
inline __device__ int handlePeriodicBoundaryX(int k, int nx_, int boundary_conditions_) {
|
|
const int gc_pad = gc_x;
|
|
|
|
//West boundary: add an offset to read from east of domain
|
|
if (gc_x > 0) {
|
|
if ((k < gc_pad)
|
|
&& getBCWest(boundary_conditions_) == Periodic) {
|
|
k += (nx_+2*gc_x - 2*gc_pad);
|
|
}
|
|
//East boundary: subtract an offset to read from west of domain
|
|
else if ((k >= nx_+2*gc_x-gc_pad)
|
|
&& getBCEast(boundary_conditions_) == Periodic) {
|
|
k -= (nx_+2*gc_x - 2*gc_pad);
|
|
}
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
/**
|
|
* Alter the index l so that it gives periodic boundary conditions when reading
|
|
*/
|
|
template<int gc_y>
|
|
inline __device__ int handlePeriodicBoundaryY(int l, int ny_, int boundary_conditions_) {
|
|
const int gc_pad = gc_y;
|
|
|
|
//South boundary: add an offset to read from north of domain
|
|
if (gc_y > 0) {
|
|
if ((l < gc_pad)
|
|
&& getBCSouth(boundary_conditions_) == Periodic) {
|
|
l += (ny_+2*gc_y - 2*gc_pad);
|
|
}
|
|
//North boundary: subtract an offset to read from south of domain
|
|
else if ((l >= ny_+2*gc_y-gc_pad)
|
|
&& getBCNorth(boundary_conditions_) == Periodic) {
|
|
l -= (ny_+2*gc_y - 2*gc_pad);
|
|
}
|
|
}
|
|
|
|
return l;
|
|
}
|
|
|
|
|
|
template<int w, int h, int gc_x, int gc_y, int sign_x, int sign_y>
|
|
inline __device__
|
|
void handleReflectiveBoundary(
|
|
float Q[h+2*gc_y][w+2*gc_x],
|
|
const int nx_, const int ny_,
|
|
const int boundary_conditions_) {
|
|
|
|
//Handle reflective boundary conditions
|
|
if (getBCNorth(boundary_conditions_) == Reflective) {
|
|
bcNorthReflective<w, h, gc_x, gc_y, sign_y>(Q, nx_, ny_);
|
|
__syncthreads();
|
|
}
|
|
if (getBCSouth(boundary_conditions_) == Reflective) {
|
|
bcSouthReflective<w, h, gc_x, gc_y, sign_y>(Q, nx_, ny_);
|
|
__syncthreads();
|
|
}
|
|
if (getBCEast(boundary_conditions_) == Reflective) {
|
|
bcEastReflective<w, h, gc_x, gc_y, sign_x>(Q, nx_, ny_);
|
|
__syncthreads();
|
|
}
|
|
if (getBCWest(boundary_conditions_) == Reflective) {
|
|
bcWestReflective<w, h, gc_x, gc_y, sign_x>(Q, nx_, ny_);
|
|
__syncthreads();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reads a block of data with ghost cells
|
|
*/
|
|
template<int w, int h, int gc_x, int gc_y, int sign_x, int sign_y>
|
|
inline __device__ void readBlock(float* ptr_, int pitch_,
|
|
float Q[h+2*gc_y][w+2*gc_x],
|
|
const int nx_, const int ny_,
|
|
const int boundary_conditions_) {
|
|
//Index of block within domain
|
|
const int bx = blockDim.x * blockIdx.x;
|
|
const int by = blockDim.y * blockIdx.y;
|
|
|
|
//Read into shared memory
|
|
//Loop over all variables
|
|
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
|
//Handle periodic boundary conditions here
|
|
int l = handlePeriodicBoundaryY<gc_y>(by + j, ny_, boundary_conditions_);
|
|
l = min(l, ny_+2*gc_y-1);
|
|
float* row = (float*) ((char*) ptr_ + pitch_*l);
|
|
|
|
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
|
//Handle periodic boundary conditions here
|
|
int k = handlePeriodicBoundaryX<gc_x>(bx + i, nx_, boundary_conditions_);
|
|
k = min(k, nx_+2*gc_x-1);
|
|
|
|
//Read from global memory
|
|
Q[j][i] = row[k];
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
handleReflectiveBoundary<w, h, gc_x, gc_y, sign_x, sign_y>(Q, nx_, ny_, boundary_conditions_);
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Writes a block of data to global memory for the shallow water equations.
|
|
*/
|
|
template<int w, int h, int gc_x, int gc_y>
|
|
inline __device__ void writeBlock(float* ptr_, int pitch_,
|
|
float shmem[h+2*gc_y][w+2*gc_x],
|
|
const int nx_, const int ny_,
|
|
int rk_step_, int rk_order_) {
|
|
|
|
//Index of cell within domain
|
|
const int ti = blockDim.x*blockIdx.x + threadIdx.x + gc_x;
|
|
const int tj = blockDim.y*blockIdx.y + threadIdx.y + gc_y;
|
|
|
|
//Only write internal cells
|
|
if (ti < nx_+gc_x && tj < ny_+gc_y) {
|
|
//Index of thread within block
|
|
const int tx = threadIdx.x + gc_x;
|
|
const int ty = threadIdx.y + gc_y;
|
|
|
|
float* const row = (float*) ((char*) ptr_ + pitch_*tj);
|
|
|
|
//Handle runge-kutta timestepping here
|
|
row[ti] = shmem[ty][tx];
|
|
|
|
|
|
|
|
/**
|
|
* SSPRK1 (forward Euler)
|
|
* u^1 = u^n + dt*f(u^n)
|
|
*/
|
|
if (rk_order_ == 1) {
|
|
row[ti] = shmem[ty][tx];
|
|
}
|
|
/**
|
|
* SSPRK2
|
|
* u^1 = u^n + dt*f(u^n)
|
|
* u^n+1 = 1/2*u^n + 1/2*(u^1 + dt*f(u^1))
|
|
*/
|
|
else if (rk_order_ == 2) {
|
|
if (rk_step_ == 0) {
|
|
row[ti] = shmem[ty][tx];
|
|
}
|
|
else if (rk_step_ == 1) {
|
|
row[ti] = 0.5f*row[ti] + 0.5f*shmem[ty][tx];
|
|
}
|
|
}
|
|
/**
|
|
* SSPRK3
|
|
* u^1 = u^n + dt*f(u^n)
|
|
* u^2 = 3/4 * u^n + 1/4 * (u^1 + dt*f(u^1))
|
|
* u^n+1 = 1/3 * u^n + 2/3 * (u^2 + dt*f(u^2))
|
|
* FIXME: This is not correct now, need a temporary to hold intermediate step u^2
|
|
*/
|
|
else if (rk_order_ == 3) {
|
|
if (rk_step_ == 0) {
|
|
row[ti] = shmem[ty][tx];
|
|
}
|
|
else if (rk_step_ == 1) {
|
|
row[ti] = 0.75f*row[ti] + 0.25f*shmem[ty][tx];
|
|
}
|
|
else if (rk_step_ == 2) {
|
|
const float t = 1.0f / 3.0f; //Not representable in base 2
|
|
row[ti] = t*row[ti] + (1.0f-t)*shmem[ty][tx];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<int w, int h, int gc_x, int gc_y, int vars>
|
|
__device__ void evolveF(float Q[vars][h+2*gc_y][w+2*gc_x],
|
|
float F[vars][h+2*gc_y][w+2*gc_x],
|
|
const float dx_, const float dt_) {
|
|
for (int var=0; var < vars; ++var) {
|
|
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
|
for (int i=threadIdx.x+gc_x; i<w+gc_x; i+=w) {
|
|
Q[var][j][i] = Q[var][j][i] + (F[var][j][i-1] - F[var][j][i]) * dt_ / dx_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Evolves the solution in time along the y axis (dimensional splitting)
|
|
*/
|
|
template<int w, int h, int gc_x, int gc_y, int vars>
|
|
__device__ void evolveG(float Q[vars][h+2*gc_y][w+2*gc_x],
|
|
float G[vars][h+2*gc_y][w+2*gc_x],
|
|
const float dy_, const float dt_) {
|
|
for (int var=0; var < vars; ++var) {
|
|
for (int j=threadIdx.y+gc_y; j<h+gc_y; j+=h) {
|
|
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
|
Q[var][j][i] = Q[var][j][i] + (G[var][j-1][i] - G[var][j][i]) * dt_ / dy_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Helper function for debugging etc.
|
|
*/
|
|
template<int shmem_width, int shmem_height, int vars>
|
|
__device__ void memset(float Q[vars][shmem_height][shmem_width], float value) {
|
|
for (int k=0; k<vars; ++k) {
|
|
for (int j=threadIdx.y; j<shmem_height; ++j) {
|
|
for (int i=threadIdx.x; i<shmem_width; ++i) {
|
|
Q[k][j][i] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <unsigned int threads>
|
|
__device__ void reduce_max(float* data, unsigned int n) {
|
|
__shared__ float sdata[threads];
|
|
unsigned int tid = threadIdx.x;
|
|
|
|
//Reduce to "threads" elements
|
|
sdata[tid] = FLT_MIN;
|
|
for (unsigned int i=tid; i<n; i += threads) {
|
|
sdata[tid] = max(sdata[tid], dt_ctx.L[i]);
|
|
}
|
|
__syncthreads();
|
|
|
|
//Now, reduce all elements into a single element
|
|
if (threads >= 512) {
|
|
if (tid < 256) {
|
|
sdata[tid] = max(sdata[tid], sdata[tid + 256]);
|
|
}
|
|
__syncthreads();
|
|
}
|
|
if (threads >= 256) {
|
|
if (tid < 128) {
|
|
sdata[tid] = max(sdata[tid], sdata[tid + 128]);
|
|
}
|
|
__syncthreads();
|
|
}
|
|
if (threads >= 128) {
|
|
if (tid < 64) {
|
|
sdata[tid] = max(sdata[tid], sdata[tid + 64]);
|
|
}
|
|
__syncthreads();
|
|
}
|
|
if (tid < 32) {
|
|
volatile float* sdata_volatile = sdata;
|
|
if (threads >= 64) {
|
|
sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 32]);
|
|
}
|
|
if (tid < 16) {
|
|
if (threads >= 32) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 16]);
|
|
if (threads >= 16) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 8]);
|
|
if (threads >= 8) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 4]);
|
|
if (threads >= 4) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 2]);
|
|
if (threads >= 2) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 1]);
|
|
}
|
|
|
|
if (tid == 0) {
|
|
return sdata_volatile[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|