120 lines
4.0 KiB
Python

import logging
import numpy as np
import pycuda.gpuarray
import pycuda.driver as cuda
from pycuda.tools import PageLockedMemoryPool
class CudaArray3D:
"""
Class that holds 3D data
"""
def __init__(self, stream, nx, ny, nz, x_halo, y_halo, z_halo, cpu_data=None, dtype=np.float32):
"""
Uploads initial data to the CL device
"""
self.logger = logging.getLogger(__name__)
self.nx = nx
self.ny = ny
self.nz = nz
self.x_halo = x_halo
self.y_halo = y_halo
self.z_halo = z_halo
nx_halo = nx + 2 * x_halo
ny_halo = ny + 2 * y_halo
nz_halo = nz + 2 * z_halo
# self.logger.debug("Allocating [%dx%dx%d] buffer", self.nx, self.ny, self.nz)
# Should perhaps use pycuda.driver.mem_alloc_data.pitch() here
self.data = pycuda.gpuarray.zeros((nz_halo, ny_halo, nx_halo), dtype)
# For returning to download
self.memorypool = PageLockedMemoryPool()
# If we don't have any data, just allocate and return
if cpu_data is None:
return
# Make sure data is in proper format
if (cpu_data.shape != (nz_halo, ny_halo, nx_halo)
and cpu_data.shape != (self.nz, self.ny, self.nx)):
raise ValueError(f"Wrong shape of data {str(cpu_data.shape)} vs {str((self.nz, self.ny, self.nx))} / {str((nz_halo, ny_halo, nx_halo))}")
if cpu_data.itemsize != 4:
raise ValueError("Wrong size of data type")
if np.isfortran(cpu_data):
raise TypeError("Wrong datatype (Fortran, expected C)")
# Create a copy object from host to device
copy = cuda.Memcpy3D()
copy.set_src_host(cpu_data)
copy.set_dst_device(self.data.gpudata)
# Set offsets of destination
x_offset = (nx_halo - cpu_data.shape[2]) // 2
y_offset = (ny_halo - cpu_data.shape[1]) // 2
z_offset = (nz_halo - cpu_data.shape[0]) // 2
copy.dst_x_in_bytes = x_offset * self.data.strides[1]
copy.dst_y = y_offset
copy.dst_z = z_offset
# Set pitch of destination
copy.dst_pitch = self.data.strides[0]
# Set width in bytes to copy for each row and
# number of rows to copy
width = max(self.nx, cpu_data.shape[2])
height = max(self.ny, cpu_data.shape[1])
depth = max(self.nz, cpu - data.shape[0])
copy.width_in_bytes = width * cpu_data.itemsize
copy.height = height
copy.depth = depth
# Perform the copy
copy(stream)
# self.logger.debug("Buffer <%s> [%dx%d]: Allocated ", int(self.data.gpudata), self.nx, self.ny)
def __del__(self, *args):
# self.logger.debug("Buffer <%s> [%dx%d]: Releasing ", int(self.data.gpudata), self.nx, self.ny)
self.data.gpudata.free()
self.data = None
def download(self, stream, asynch=False):
"""
Enables downloading data from GPU to Python
"""
# self.logger.debug("Downloading [%dx%d] buffer", self.nx, self.ny)
# Allocate host memory
# cpu_data = cuda.pagelocked_empty((self.ny, self.nx), np.float32)
# cpu_data = np.empty((self.nz, self.ny, self.nx), dtype=np.float32)
cpu_data = self.memorypool.allocate((self.nz, self.ny, self.nx), dtype=np.float32)
# Create a copy object from device to host
copy = cuda.Memcpy2D()
copy.set_src_device(self.data.gpudata)
copy.set_dst_host(cpu_data)
# Set offsets and pitch of a source
copy.src_x_in_bytes = self.x_halo * self.data.strides[1]
copy.src_y = self.y_halo
copy.src_z = self.z_halo
copy.src_pitch = self.data.strides[0]
# Set width in bytes to copy for each row and
# number of rows to copy
copy.width_in_bytes = self.nx * cpu_data.itemsize
copy.height = self.ny
copy.depth = self.nz
copy(stream)
if not asynch:
stream.synchronize()
return cpu_data