2018-11-15 16:48:47 +01:00

143 lines
4.9 KiB
Plaintext

/*
This OpenCL kernel implements the classical Lax-Friedrichs scheme
for the shallow water equations, with edge fluxes.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_, const float dx_, const float dt_) {
//Compute fluxes along the x axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][j][i+1],
Q[1][j][i+1],
Q[2][j][i+1]);
const float3 Qm = make_float3(Q[0][j][i],
Q[1][j][i],
Q[2][j][i]);
// Computed flux
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_, const float dy_, const float dt_) {
//Compute fluxes along the y axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][j+1][i],
Q[2][j+1][i],
Q[1][j+1][i]);
const float3 Qm = make_float3(Q[0][j][i],
Q[2][j][i],
Q[1][j][i]);
// Computed flux
// Note that we swap back
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void FORCEKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 1;
const unsigned int gc_y = 1;
const unsigned int vars = 3;
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
__syncthreads();
//Compute flux along x, and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute flux along y, and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Write to main memory
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"