mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 14:34:13 +02:00
187 lines
5.3 KiB
C++
187 lines
5.3 KiB
C++
/*
|
|
These CUDA functions implement different types of numerical flux
|
|
functions for the shallow water equations
|
|
|
|
Copyright (C) 2016, 2017, 2018 SINTEF Digital
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#pragma once
|
|
#include "limiters.h"
|
|
|
|
|
|
|
|
template<int w, int h, int gc_x, int gc_y, int vars>
|
|
__device__ void writeCfl(float Q[vars][h+2*gc_y][w+2*gc_x],
|
|
float shmem[h+2*gc_y][w+2*gc_x],
|
|
const int nx_, const int ny_,
|
|
const float dx_, const float dy_, const float gamma_,
|
|
float* output_) {
|
|
//Index of thread within block
|
|
const int tx = threadIdx.x + gc_x;
|
|
const int ty = threadIdx.y + gc_y;
|
|
|
|
//Index of cell within domain
|
|
const int ti = blockDim.x*blockIdx.x + tx;
|
|
const int tj = blockDim.y*blockIdx.y + ty;
|
|
|
|
//Only internal cells
|
|
if (ti < nx_+gc_x && tj < ny_+gc_y) {
|
|
const float rho = Q[0][ty][tx];
|
|
const float u = Q[1][ty][tx] / rho;
|
|
const float v = Q[2][ty][tx] / rho;
|
|
|
|
const float max_u = dx_ / (fabsf(u) + sqrtf(gamma_*rho));
|
|
const float max_v = dy_ / (fabsf(v) + sqrtf(gamma_*rho));
|
|
|
|
shmem[ty][tx] = fminf(max_u, max_v);
|
|
}
|
|
__syncthreads();
|
|
|
|
//One row of threads loop over all rows
|
|
if (ti < nx_+gc_x && tj < ny_+gc_y) {
|
|
if (ty == gc_y) {
|
|
float min_val = shmem[ty][tx];
|
|
const int max_y = min(h, ny_+gc_y - tj);
|
|
for (int j=gc_y; j<max_y+gc_y; j++) {
|
|
min_val = fminf(min_val, shmem[j][tx]);
|
|
}
|
|
shmem[ty][tx] = min_val;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
//One thread loops over first row to find global max
|
|
if (tx == gc_x && ty == gc_y) {
|
|
float min_val = shmem[ty][tx];
|
|
const int max_x = min(w, nx_+gc_x - ti);
|
|
for (int i=gc_x; i<max_x+gc_x; ++i) {
|
|
min_val = fminf(min_val, shmem[ty][i]);
|
|
}
|
|
|
|
const int idx = gridDim.x*blockIdx.y + blockIdx.x;
|
|
output_[idx] = min_val;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline __device__ float pressure(float4 Q, float gamma) {
|
|
const float rho = Q.x;
|
|
const float rho_u = Q.y;
|
|
const float rho_v = Q.z;
|
|
const float E = Q.w;
|
|
|
|
return (gamma-1.0f)*(E-0.5f*(rho_u*rho_u + rho_v*rho_v)/rho);
|
|
}
|
|
|
|
|
|
__device__ float4 F_func(const float4 Q, float P) {
|
|
const float rho = Q.x;
|
|
const float rho_u = Q.y;
|
|
const float rho_v = Q.z;
|
|
const float E = Q.w;
|
|
|
|
const float u = rho_u/rho;
|
|
|
|
float4 F;
|
|
|
|
F.x = rho_u;
|
|
F.y = rho_u*u + P;
|
|
F.z = rho_v*u;
|
|
F.w = u*(E+P);
|
|
|
|
return F;
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180)
|
|
*/
|
|
__device__ float4 HLL_flux(const float4 Q_l, const float4 Q_r, const float gamma) {
|
|
const float h_l = Q_l.x;
|
|
const float h_r = Q_r.x;
|
|
|
|
// Calculate velocities
|
|
const float u_l = Q_l.y / h_l;
|
|
const float u_r = Q_r.y / h_r;
|
|
|
|
// Calculate pressures
|
|
const float P_l = pressure(Q_l, gamma);
|
|
const float P_r = pressure(Q_r, gamma);
|
|
|
|
// Estimate the potential wave speeds
|
|
const float c_l = sqrt(gamma*P_l/Q_l.x);
|
|
const float c_r = sqrt(gamma*P_r/Q_r.x);
|
|
|
|
// Compute h in the "star region", h^dagger
|
|
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
|
|
|
|
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
|
|
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
|
|
|
|
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
|
|
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
|
|
|
|
// Compute wave speed estimates
|
|
const float S_l = u_l - c_l*q_l;
|
|
const float S_r = u_r + c_r*q_r;
|
|
|
|
//Upwind selection
|
|
if (S_l >= 0.0f) {
|
|
return F_func(Q_l, P_l);
|
|
}
|
|
else if (S_r <= 0.0f) {
|
|
return F_func(Q_r, P_r);
|
|
}
|
|
//Or estimate flux in the star region
|
|
else {
|
|
const float4 F_l = F_func(Q_l, P_l);
|
|
const float4 F_r = F_func(Q_r, P_r);
|
|
const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
|
|
return flux;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Central upwind flux function
|
|
*/
|
|
__device__ float4 CentralUpwindFlux(const float4 Qm, const float4 Qp, const float gamma) {
|
|
|
|
const float Pp = pressure(Qp, gamma);
|
|
const float4 Fp = F_func(Qp, Pp);
|
|
const float up = Qp.y / Qp.x; // rho*u / rho
|
|
const float cp = sqrt(gamma*Pp/Qp.x); // sqrt(gamma*P/rho)
|
|
|
|
const float Pm = pressure(Qm, gamma);
|
|
const float4 Fm = F_func(Qm, Pm);
|
|
const float um = Qm.y / Qm.x; // rho*u / rho
|
|
const float cm = sqrt(gamma*Pm/Qm.x); // sqrt(gamma*P/rho)
|
|
|
|
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
|
|
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
|
|
|
|
return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am);
|
|
} |