André R. Brodtkorb 064027fc0b Refactoring
2018-10-31 15:49:10 +01:00

171 lines
4.6 KiB
Plaintext

/*
This GPU kernel implements the HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
{
const int j=ty;
const int l = j + 1; //Skip ghost cells
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
const int k = i;
const float3 Q_l = make_float3(Q[0][l][k ], Q[1][l][k ], Q[2][l][k ]);
const float3 Q_r = make_float3(Q[0][l][k+1], Q[1][l][k+1], Q[2][l][k+1]);
const float3 flux = HLL_flux(Q_l, Q_r, g_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
const int l = j;
{
const int i=tx;
const int k = i + 1; //Skip ghost cells
//NOte that hu and hv are swapped ("transposing" the domain)!
const float3 Q_l = make_float3(Q[0][l ][k], Q[2][l ][k], Q[1][l ][k]);
const float3 Q_r = make_float3(Q[0][l+1][k], Q[2][l+1][k], Q[1][l+1][k]);
// Computed flux
const float3 flux = HLL_flux(Q_l, Q_r, g_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void HLLKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc = 1;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[3][h+2][w+2];
__shared__ float F[3][h+1][w+1];
//Read into shared memory
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
__syncthreads();
//Set boundary conditions
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
__syncthreads();
//Compute F flux
computeFluxF(Q, F, g_);
__syncthreads();
evolveF<w, h, gc, vars>(Q, F, dx_, dt_);
__syncthreads();
//Set boundary conditions
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
__syncthreads();
//Compute G flux
computeFluxG(Q, F, g_);
__syncthreads();
evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
__syncthreads();
// Write to main memory for all internal cells
writeBlock<w, h, gc>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
writeBlock<w, h, gc>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
writeBlock<w, h, gc>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
}
} // extern "C"