134 lines
4.9 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the FORCE flux
for the shallow water equations
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
from pycuda import gpuarray
class FORCE (Simulator.BaseSimulator):
"""
Class that solves the SW equations
"""
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16,
dt: float=None,
compile_opts: list[str]=[]):
"""
Initialization routine
Args:
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
compile_opts: Pass a list of nvcc compiler options
"""
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
1,
block_width, block_height)
self.g = np.float32(g)
#Get kernels
module = context.get_module("cuda/SWE2D_FORCE.cu",
defines={
'BLOCK_WIDTH': self.block_size[0],
'BLOCK_HEIGHT': self.block_size[1]
},
compile_args={
'no_extern_c': True,
'options': ["--use_fast_math"] + compile_opts,
},
jit_compile_args={})
self.kernel = module.get_function("FORCEKernel")
self.kernel.prepare("iiffffiPiPiPiPiPiPiPiiii")
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[None, None, None])
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
if dt == None:
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
self.dt = min(dt_x, dt_y)
else:
self.dt = dt
self.cfl_data.fill(self.dt, stream=self.stream)
def substep(self, dt, step_number):
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.cfl_data.gpudata,
0, 0,
self.nx, self.ny)
self.u0, self.u1 = self.u1, self.u0
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
def computeDt(self):
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
return max_dt