/* These CUDA functions implement different types of numerical flux functions for the shallow water equations Copyright (C) 2016, 2017, 2018 SINTEF Digital This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include "limiters.h" inline __device__ float pressure(float4 Q, float gamma) { const float rho = Q.x; const float rho_u = Q.y; const float rho_v = Q.z; const float E = Q.w; return (gamma-1.0f)*(E-0.5f*(rho_u*rho_u + rho_v*rho_v)/rho); } __device__ float4 F_func(const float4 Q, float P) { const float rho = Q.x; const float rho_u = Q.y; const float rho_v = Q.z; const float E = Q.w; const float u = rho_u/rho; float4 F; F.x = rho_u; F.y = rho_u*u + P; F.z = rho_v*u; F.w = u*(E+P); return F; } /** * Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180) */ __device__ float4 HLL_flux(const float4 Q_l, const float4 Q_r, const float gamma) { const float h_l = Q_l.x; const float h_r = Q_r.x; // Calculate velocities const float u_l = Q_l.y / h_l; const float u_r = Q_r.y / h_r; // Calculate pressures const float P_l = pressure(Q_l, gamma); const float P_r = pressure(Q_r, gamma); // Estimate the potential wave speeds const float c_l = sqrt(gamma*P_l/Q_l.x); const float c_r = sqrt(gamma*P_r/Q_r.x); // Compute h in the "star region", h^dagger const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r); const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) ); const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) ); const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f; const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f; // Compute wave speed estimates const float S_l = u_l - c_l*q_l; const float S_r = u_r + c_r*q_r; //Upwind selection if (S_l >= 0.0f) { return F_func(Q_l, P_l); } else if (S_r <= 0.0f) { return F_func(Q_r, P_r); } //Or estimate flux in the star region else { const float4 F_l = F_func(Q_l, P_l); const float4 F_r = F_func(Q_r, P_r); const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l); return flux; } } /** * Central upwind flux function */ __device__ float4 CentralUpwindFlux(const float4 Qm, const float4 Qp, const float gamma) { const float Pp = pressure(Qp, gamma); const float4 Fp = F_func(Qp, Pp); const float up = Qp.y / Qp.x; // rho*u / rho const float cp = sqrt(gamma*Pp/Qp.x); // sqrt(gamma*P/rho) const float Pm = pressure(Qm, gamma); const float4 Fm = F_func(Qm, Pm); const float um = Qm.y / Qm.x; // rho*u / rho const float cm = sqrt(gamma*Pm/Qm.x); // sqrt(gamma*P/rho) const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am); }