/* These CUDA functions implement different types of numerical flux functions for the shallow water equations Copyright (C) 2016, 2017, 2018 SINTEF Digital This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include "common.h" #include "limiters.h" template __device__ void writeCfl(float Q[vars][h + 2 * gc_y][w + 2 * gc_x], float shmem[h + 2 * gc_y][w + 2 * gc_x], const int nx_, const int ny_, const float dx_, const float dy_, const float gamma_, float *output_) { // Index of thread within block const int tx = threadIdx.x + gc_x; const int ty = threadIdx.y + gc_y; // Index of cell within domain const int ti = blockDim.x * blockIdx.x + tx; const int tj = blockDim.y * blockIdx.y + ty; // Only internal cells if (ti < nx_ + gc_x && tj < ny_ + gc_y) { const float rho = Q[0][ty][tx]; const float u = Q[1][ty][tx] / rho; const float v = Q[2][ty][tx] / rho; const float max_u = dx_ / (fabsf(u) + sqrtf(gamma_ * rho)); const float max_v = dy_ / (fabsf(v) + sqrtf(gamma_ * rho)); shmem[ty][tx] = fminf(max_u, max_v); } __syncthreads(); // One row of threads loop over all rows if (ti < nx_ + gc_x && tj < ny_ + gc_y) { if (ty == gc_y) { float min_val = shmem[ty][tx]; const int max_y = fminf(h, ny_ + gc_y - tj); for (int j = gc_y; j < max_y + gc_y; ++j) { min_val = fminf(min_val, shmem[j][tx]); } shmem[ty][tx] = min_val; } } __syncthreads(); // One thread loops over first row to find global max if (tx == gc_x && ty == gc_y) { float min_val = shmem[ty][tx]; const int max_x = fminf(w, nx_ + gc_x - ti); for (int i = gc_x; i < max_x + gc_x; ++i) { min_val = fminf(min_val, shmem[ty][i]); } const unsigned int idx = gridDim.x * blockIdx.y + blockIdx.x; output_[idx] = min_val; } } inline __device__ float pressure(float4 Q, float gamma) { const float rho = Q.x; const float rho_u = Q.y; const float rho_v = Q.z; const float E = Q.w; return (gamma - 1.0f) * (E - 0.5f * (rho_u * rho_u + rho_v * rho_v) / rho); } __device__ inline float4 F_func(const float4 Q, const float P) { const float rho = Q.x; const float rho_u = Q.y; const float rho_v = Q.z; const float E = Q.w; const float u = rho_u / rho; float4 F = make_float4( rho_u, rho_u * u + P, rho_v * u, u * (E + P) ); return F; } /** * Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180) */ __device__ inline float4 HLL_flux(const float4 Q_l, const float4 Q_r, const float gamma) { const float h_l = Q_l.x; const float h_r = Q_r.x; // Calculate velocities const float u_l = Q_l.y / h_l; const float u_r = Q_r.y / h_r; // Calculate pressures const float P_l = pressure(Q_l, gamma); const float P_r = pressure(Q_r, gamma); // Estimate the potential wave speeds const float c_l = sqrt(gamma * P_l / Q_l.x); const float c_r = sqrt(gamma * P_r / Q_r.x); // Compute h in the "star region", h^dagger const float h_dag = 0.5f * (h_l + h_r) - 0.25f * (u_r - u_l) * (h_l + h_r) / (c_l + c_r); const float q_l_tmp = sqrt(0.5f * ((h_dag + h_l) * h_dag / (h_l * h_l))); const float q_r_tmp = sqrt(0.5f * ((h_dag + h_r) * h_dag / (h_r * h_r))); const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f; const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f; // Compute wave speed estimates const float S_l = u_l - c_l * q_l; const float S_r = u_r + c_r * q_r; // Upwind selection if (S_l >= 0.0f) { return F_func(Q_l, P_l); } else if (S_r <= 0.0f) { return F_func(Q_r, P_r); } // Or estimate flux in the star region else { const float4 F_l = F_func(Q_l, P_l); const float4 F_r = F_func(Q_r, P_r); const float4 flux = (S_r * F_l - S_l * F_r + S_r * S_l * (Q_r - Q_l)) / (S_r - S_l); return flux; } } /** * Central upwind flux function */ __device__ inline float4 CentralUpwindFlux(const float4 Qm, const float4 Qp, const float gamma) { const float Pp = pressure(Qp, gamma); const float4 Fp = F_func(Qp, Pp); const float up = Qp.y / Qp.x; // rho*u / rho const float cp = sqrt(gamma * Pp / Qp.x); // sqrt(gamma*P/rho) const float Pm = pressure(Qm, gamma); const float4 Fm = F_func(Qm, Pm); const float um = Qm.y / Qm.x; // rho*u / rho const float cm = sqrt(gamma * Pm / Qm.x); // sqrt(gamma*P/rho) const float am = fminf(fminf(um - cm, up - cp), 0.0f); // largest negative wave speed const float ap = fmaxf(fmaxf(um + cm, up + cp), 0.0f); // largest positive wave speed return ((ap * Fm - am * Fp) + ap * am * (Qp - Qm)) / (ap - am); }