/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/**
* Reads a block of data with one ghost cell for the shallow water equations
*/
void readBlock1(__global float* h_ptr_, int h_pitch_,
__global float* hu_ptr_, int hu_pitch_,
__global float* hv_ptr_, int hv_pitch_,
__local float Q[3][block_height+2][block_width+2],
const int nx_, const int ny_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of block within domain
const int bx = get_local_size(0) * get_group_id(0);
const int by = get_local_size(1) * get_group_id(1);
//Read into shared memory
for (int j=ty; j 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) {
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
__global float* const h_row = (__global float*) ((__global char*) h_ptr_ + h_pitch_*tj);
__global float* const hu_row = (__global float*) ((__global char*) hu_ptr_ + hu_pitch_*tj);
__global float* const hv_row = (__global float*) ((__global char*) hv_ptr_ + hv_pitch_*tj);
h_row[ti] = Q[0][j][i];
hu_row[ti] = Q[1][j][i];
hv_row[ti] = Q[2][j][i];
}
}
/**
* Writes a block of data to global memory for the shallow water equations.
*/
void writeBlock2(__global float* h_ptr_, int h_pitch_,
__global float* hu_ptr_, int hu_pitch_,
__global float* hv_ptr_, int hv_pitch_,
__local float Q[3][block_height+4][block_width+4],
const int nx_, const int ny_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
//Only write internal cells
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
__global float* const h_row = (__global float*) ((__global char*) h_ptr_ + h_pitch_*tj);
__global float* const hu_row = (__global float*) ((__global char*) hu_ptr_ + hu_pitch_*tj);
__global float* const hv_row = (__global float*) ((__global char*) hv_ptr_ + hv_pitch_*tj);
h_row[ti] = Q[0][j][i];
hu_row[ti] = Q[1][j][i];
hv_row[ti] = Q[2][j][i];
}
}
/**
* No flow boundary conditions for the shallow water equations
* with one ghost cell in each direction
*/
void noFlowBoundary1(__local float Q[3][block_height+2][block_width+2], const int nx_, const int ny_) {
//Global index
const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1
const int tj = get_global_id(1) + 1;
//Block-local indices
const int tx = get_local_id(0);
const int ty = get_local_id(1);
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
//Fix boundary conditions
if (ti == 1) {
Q[0][j][i-1] = Q[0][j][i];
Q[1][j][i-1] = -Q[1][j][i];
Q[2][j][i-1] = Q[2][j][i];
}
if (ti == nx_) {
Q[0][j][i+1] = Q[0][j][i];
Q[1][j][i+1] = -Q[1][j][i];
Q[2][j][i+1] = Q[2][j][i];
}
if (tj == 1) {
Q[0][j-1][i] = Q[0][j][i];
Q[1][j-1][i] = Q[1][j][i];
Q[2][j-1][i] = -Q[2][j][i];
}
if (tj == ny_) {
Q[0][j+1][i] = Q[0][j][i];
Q[1][j+1][i] = Q[1][j][i];
Q[2][j+1][i] = -Q[2][j][i];
}
}
/**
* No flow boundary conditions for the shallow water equations
* with two ghost cells in each direction
*/
void noFlowBoundary2(__local float Q[3][block_height+4][block_width+4], const int nx_, const int ny_) {
//Global index
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
//Block-local indices
const int tx = get_local_id(0);
const int ty = get_local_id(1);
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
if (ti == 2) {
Q[0][j][i-1] = Q[0][j][i];
Q[1][j][i-1] = -Q[1][j][i];
Q[2][j][i-1] = Q[2][j][i];
Q[0][j][i-2] = Q[0][j][i+1];
Q[1][j][i-2] = -Q[1][j][i+1];
Q[2][j][i-2] = Q[2][j][i+1];
}
if (ti == nx_+1) {
Q[0][j][i+1] = Q[0][j][i];
Q[1][j][i+1] = -Q[1][j][i];
Q[2][j][i+1] = Q[2][j][i];
Q[0][j][i+2] = Q[0][j][i-1];
Q[1][j][i+2] = -Q[1][j][i-1];
Q[2][j][i+2] = Q[2][j][i-1];
}
if (tj == 2) {
Q[0][j-1][i] = Q[0][j][i];
Q[1][j-1][i] = Q[1][j][i];
Q[2][j-1][i] = -Q[2][j][i];
Q[0][j-2][i] = Q[0][j+1][i];
Q[1][j-2][i] = Q[1][j+1][i];
Q[2][j-2][i] = -Q[2][j+1][i];
}
if (tj == ny_+1) {
Q[0][j+1][i] = Q[0][j][i];
Q[1][j+1][i] = Q[1][j][i];
Q[2][j+1][i] = -Q[2][j][i];
Q[0][j+2][i] = Q[0][j-1][i];
Q[1][j+2][i] = Q[1][j-1][i];
Q[2][j+2][i] = -Q[2][j-1][i];
}
}
/**
* Evolves the solution in time along the x axis (dimensional splitting)
*/
void evolveF1(__local float Q[3][block_height+2][block_width+2],
__local float F[3][block_height+1][block_width+1],
const int nx_, const int ny_,
const float dx_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1
const int tj = get_global_id(1) + 1;
if (ti > 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) {
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
Q[0][j][i] = Q[0][j][i] + (F[0][ty][tx] - F[0][ty][tx+1]) * dt_ / dx_;
Q[1][j][i] = Q[1][j][i] + (F[1][ty][tx] - F[1][ty][tx+1]) * dt_ / dx_;
Q[2][j][i] = Q[2][j][i] + (F[2][ty][tx] - F[2][ty][tx+1]) * dt_ / dx_;
}
}
/**
* Evolves the solution in time along the x axis (dimensional splitting)
*/
void evolveF2(__local float Q[3][block_height+4][block_width+4],
__local float F[3][block_height+1][block_width+1],
const int nx_, const int ny_,
const float dx_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +1
const int j = ty + 2;
Q[0][j][i] = Q[0][j][i] + (F[0][ty][tx] - F[0][ty][tx+1]) * dt_ / dx_;
Q[1][j][i] = Q[1][j][i] + (F[1][ty][tx] - F[1][ty][tx+1]) * dt_ / dx_;
Q[2][j][i] = Q[2][j][i] + (F[2][ty][tx] - F[2][ty][tx+1]) * dt_ / dx_;
}
}
/**
* Evolves the solution in time along the y axis (dimensional splitting)
*/
void evolveG1(__local float Q[3][block_height+2][block_width+2],
__local float G[3][block_height+1][block_width+1],
const int nx_, const int ny_,
const float dy_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1
const int tj = get_global_id(1) + 1;
if (ti > 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) {
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
Q[0][j][i] = Q[0][j][i] + (G[0][ty][tx] - G[0][ty+1][tx]) * dt_ / dy_;
Q[1][j][i] = Q[1][j][i] + (G[1][ty][tx] - G[1][ty+1][tx]) * dt_ / dy_;
Q[2][j][i] = Q[2][j][i] + (G[2][ty][tx] - G[2][ty+1][tx]) * dt_ / dy_;
}
}
/**
* Evolves the solution in time along the y axis (dimensional splitting)
*/
void evolveG2(__local float Q[3][block_height+4][block_width+4],
__local float G[3][block_height+1][block_width+1],
const int nx_, const int ny_,
const float dy_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
Q[0][j][i] = Q[0][j][i] + (G[0][ty][tx] - G[0][ty+1][tx]) * dt_ / dy_;
Q[1][j][i] = Q[1][j][i] + (G[1][ty][tx] - G[1][ty+1][tx]) * dt_ / dy_;
Q[2][j][i] = Q[2][j][i] + (G[2][ty][tx] - G[2][ty+1][tx]) * dt_ / dy_;
}
}
/**
* Reconstructs a slope using the minmod limiter based on three
* consecutive values
*/
float minmodSlope(float left, float center, float right, float theta) {
const float backward = (center - left) * theta;
const float central = (right - left) * 0.5f;
const float forward = (right - center) * theta;
return 0.25f
*copysign(1.0f, backward)
*(copysign(1.0f, backward) + copysign(1.0f, central))
*(copysign(1.0f, central) + copysign(1.0f, forward))
*min( min(fabs(backward), fabs(central)), fabs(forward) );
}
/**
* Reconstructs a minmod slope for a whole block along x
*/
void minmodSlopeX(__local float Q[3][block_height+4][block_width+4],
__local float Qx[3][block_height+2][block_width+2],
const float theta_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Reconstruct slopes along x axis
for (int j=ty; j h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l*q_l;
const float S_r = u_r + c_r*q_r;
//Upwind selection
if (S_l >= 0.0f) {
return F_func(Q_l, g_);
}
else if (S_r <= 0.0f) {
return F_func(Q_r, g_);
}
//Or estimate flux in the star region
else {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
const float3 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
return flux;
}
}
/**
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 181)
*/
float3 HLLC_flux(const float3 Q_l, const float3 Q_r, const float g_) {
const float h_l = Q_l.x;
const float h_r = Q_r.x;
// Calculate velocities
const float u_l = Q_l.y / h_l;
const float u_r = Q_r.y / h_r;
// Estimate the potential wave speeds
const float c_l = sqrt(g_*h_l);
const float c_r = sqrt(g_*h_r);
// Compute h in the "star region", h^dagger
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l*q_l;
const float S_r = u_r + c_r*q_r;
const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) );
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
//Upwind selection
if (S_l >= 0.0f) {
return F_l;
}
else if (S_r <= 0.0f) {
return F_r;
}
//Or estimate flux in the "left star" region
else if (S_l <= 0.0f && 0.0f <=S_star) {
const float v_l = Q_l.z / h_l;
const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * (float3)(1, S_star, v_l);
const float3 flux = F_l + S_l*(Q_star_l - Q_l);
return flux;
}
//Or estimate flux in the "righ star" region
else if (S_star <= 0.0f && 0.0f <=S_r) {
const float v_r = Q_r.z / h_r;
const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * (float3)(1, S_star, v_r);
const float3 flux = F_r + S_r*(Q_star_r - Q_r);
return flux;
}
else {
return -99999.9f; //Something wrong here
}
}
/**
* Superbee flux limiter for WAF.
* Related to superbee limiter so that WAF_superbee(r, c) = 1 - (1-|c|)*superbee(r)
* @param r_ the ratio of upwind change (see Toro 2001, p. 203/204)
* @param c_ the courant number for wave k, dt*S_k/dx
*/
float WAF_superbee(float r_, float c_) {
// r <= 0.0
if (r_ <= 0.0f) {
return 1.0f;
}
// 0.0 <= r <= 1/2
else if (r_ <= 0.5f) {
return 1.0f - 2.0f*(1.0f - fabs(c_))*r_;
}
// 1/2 <= r <= 1
else if (r_ <= 1.0f) {
return fabs(c_);
}
// 1 <= r <= 2
else if (r_ <= 2.0f) {
return 1.0f - (1.0f - fabs(c_))*r_;
}
// r >= 2
else {
return 2.0f*fabs(c_) - 1.0f;
}
}
float WAF_albada(float r_, float c_) {
if (r_ <= 0.0f) {
return 1.0f;
}
else {
return 1.0f - (1.0f - fabs(c_)) * r_ * (1.0f + r_) / (1.0f + r_*r_);
}
}
float WAF_minbee(float r_, float c_) {
if (r_ <= 0.0f) {
return 1.0f;
}
else if (r_ <= 1.0f) {
return 1.0f - (1.0f - fabs(c_))*r_;
}
else {
return fabs(c_);
}
}
float WAF_minmod(float r_, float c_) {
if (r_ <= 0.0f) {
return fabs(c_);
}
else if (r_ <= 1.0f) {
return (1.0f - r_) * (1.0f - c_);
}
else {
return 1.0f;
}
}
/**
* Weighted average flux (Toro 2001, p 200) for interface {i+1/2}
* @param r_ The flux limiter parameter (see Toro 2001, p. 203)
* @param Q_l2 Q_{i-1}
* @param Q_l1 Q_{i}
* @param Q_r1 Q_{i+1}
* @param Q_r2 Q_{i+2}
*/
float3 WAF_1D_flux(const float3 Q_l2, const float3 Q_l1, const float3 Q_r1, const float3 Q_r2, const float g_, const float dx_, const float dt_) {
const float h_l = Q_l1.x;
const float h_r = Q_r1.x;
const float h_l2 = Q_l2.x;
const float h_r2 = Q_r2.x;
// Calculate velocities
const float u_l = Q_l1.y / h_l;
const float u_r = Q_r1.y / h_r;
const float v_l = Q_l1.z / h_l;
const float v_r = Q_r1.z / h_r;
const float v_l2 = Q_l2.z / h_l2;
const float v_r2 = Q_r2.z / h_r2;
// Estimate the potential wave speeds
const float c_l = sqrt(g_*h_l);
const float c_r = sqrt(g_*h_r);
// Compute h in the "star region", h^dagger
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l;//*q_l;
const float S_r = u_r + c_r;//*q_r;
const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) );
const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * (float3)(1, S_star, v_l);
const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * (float3)(1, S_star, v_r);
// Estimate the fluxes in the four regions
const float3 F_1 = F_func(Q_l1, g_);
const float3 F_4 = F_func(Q_r1, g_);
const float3 F_2 = F_1 + S_l*(Q_star_l - Q_l1);
const float3 F_3 = F_4 + S_r*(Q_star_r - Q_r1);
//const float3 F_2 = F_func(Q_star_l, g_);
//const float3 F_3 = F_func(Q_star_r, g_);
// Compute the courant numbers for the waves
const float c_1 = S_l * dt_ / dx_;
const float c_2 = S_star * dt_ / dx_;
const float c_3 = S_r * dt_ / dx_;
// Compute the "upwind change" vectors for the i-3/2 and i+3/2 interfaces
// We use h for the tangential direction, and v for the normal direction
const float dh = h_r - h_l;
const float rh_m = (h_l - h_l2) / dh;
const float rh_p = (h_r2 - h_r) / dh;
const float dv = v_r - v_l;
const float rv_m = (v_l - v_l2) / dv;
const float rv_p = (v_r2 - v_r) / dv;
// Compute the r parameters for the flux limiter
// Note that you use h for h and hu, and v for hv component/equation
const float rh_1 = (c_1 > 0.0f) ? rh_m : rh_p;
const float rv_1 = (c_1 > 0.0f) ? rv_m : rv_p;
const float rh_2 = (c_2 > 0.0f) ? rh_m : rh_p;
const float rv_2 = (c_2 > 0.0f) ? rv_m : rv_p;
const float rh_3 = (c_3 > 0.0f) ? rh_m : rh_p;
const float rv_3 = (c_3 > 0.0f) ? rv_m : rv_p;
// Compute the limiter
const float A_1 = sign(c_1)*WAF_minbee(rh_1, c_1);
const float A_2 = sign(c_2)*WAF_minbee(rv_2, c_2);
const float A_3 = sign(c_3)*WAF_minbee(rh_3, c_3);
//Average the fluxes
const float3 flux = 0.5f*( F_1 + F_4 )
- 0.5f*( A_1 * (F_2 - F_1)
+ A_2 * (F_3 - F_2)
+ A_3 * (F_4 - F_3) );
/*
const float d_0 = -1.0f;
const float d_1 = -0.5f;//max(min(sign(c_1)*WAF_minbee(rh_1, c_1), 1.0f), -1.0f);
const float d_2 = 0.0f;//max(min(sign(c_2)*WAF_minbee(rh_2, c_2), 1.0f), -1.0f);
const float d_3 = 0.5f;//max(min(sign(c_3)*WAF_minbee(rh_3, c_3), 1.0f), -1.0f);
const float d_4 = 1.0f;
const float3 flux = 0.5f*(d_1 - d_0) * F_1
+ 0.5f*(d_2 - d_1) * F_2
+ 0.5f*(d_3 - d_2) * F_3
+ 0.5f*(d_4 - d_3) * F_4;
*/
/*
const float3 F_hllc = (S_r*F_1 - S_l*F_4 + S_r*S_l*(Q_r1 - Q_l1)) / (S_r-S_l);
const float3 flux = 0.5f*(d_1 - d_0) * F_1
+ 0.5f*(d_3 - d_1) * F_hllc
+ 0.5f*(d_4 - d_3) * F_4;
*/
/*
const float c_0 = -1.0f;
const float c_4 = 1.0f;
const float3 flux = 0.5f*(c_1 - c_0) * F_1
+ 0.5f*(c_2 - c_1) * F_2
+ 0.5f*(c_3 - c_2) * F_3
+ 0.5f*(c_4 - c_3) * F_4;
*/
//const float3 flux = 0.5f*( F_1 + F_4 ) - 0.5f*( sign(c_3) * A_3 * (F_4 - F_3) );
return flux;
}
/**
* Lax-Friedrichs flux (Toro 2001, p 163)
*/
float3 LxF_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
return 0.5f*(F_l + F_r) + (Q_l - Q_r) * dx_ / (2.0f*dt_);
}
/**
* Lax-Friedrichs extended to 2D
*/
float3 LxF_2D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
//Note numerical diffusion for 2D here (0.25)
return 0.5f*(F_l + F_r) + (Q_l - Q_r) * dx_ / (4.0f*dt_);
}
/**
* Richtmeyer / Two-step Lax-Wendroff flux (Toro 2001, p 164)
*/
float3 LxW2_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
const float3 Q_lw2 = 0.5f*(Q_l + Q_r) + (F_l - F_r)*dt_/(2.0f*dx_);
return F_func(Q_lw2, g_);
}
/**
* Godunovs centered scheme (Toro 2001, p 165)
*/
float3 GodC_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
const float3 Q_godc = 0.5f*(Q_l + Q_r) + (F_l - F_r)*dt_/dx_;
return F_func(Q_godc, g_);
}
/**
* First Ordered Centered (Toro 2001, p.163)
*/
float3 FORCE_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_lf = LxF_1D_flux(Q_l, Q_r, g_, dx_, dt_);
const float3 F_lw2 = LxW2_1D_flux(Q_l, Q_r, g_, dx_, dt_);
return 0.5f*(F_lf + F_lw2);
}