/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "common.cu"
#include "SWECommon.cu"
#include "limiters.cu"
#include "fluxes/CentralUpwind.cu"
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
{
int j=ty;
const int l = j + 2; //Skip ghost cells
for (int i=tx; i(h0_ptr_, h0_pitch_, Q[0], nx_+3, ny_+3);
readBlock(hu0_ptr_, hu0_pitch_, Q[1], nx_+3, ny_+3);
readBlock(hv0_ptr_, hv0_pitch_, Q[2], nx_+3, ny_+3);
__syncthreads();
//Fix boundary conditions
noFlowBoundary2(Q, nx_, ny_);
__syncthreads();
//Reconstruct slopes along x and axis
minmodSlopeX(Q, Qx, theta_);
minmodSlopeY(Q, Qy, theta_);
__syncthreads();
//Compute fluxes along the x and y axis
computeFluxF(Q, Qx, F, g_);
computeFluxG(Q, Qy, G, g_);
__syncthreads();
//Sum fluxes and advance in time for all internal cells
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
const float h1 = Q[0][j][i] + (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
const float hu1 = Q[1][j][i] + (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
const float hv1 = Q[2][j][i] + (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
if (step_ == 0) {
//First step of RK2 ODE integrator
h_row[ti] = h1;
hu_row[ti] = hu1;
hv_row[ti] = hv1;
}
else if (step_ == 1) {
//Second step of RK2 ODE integrator
//First read Q^n
const float h_a = h_row[ti];
const float hu_a = hu_row[ti];
const float hv_a = hv_row[ti];
//Compute Q^n+1
const float h_b = 0.5f*(h_a + h1);
const float hu_b = 0.5f*(hu_a + hu1);
const float hv_b = 0.5f*(hv_a + hv1);
//Write to main memory
h_row[ti] = h_b;
hu_row[ti] = hu_b;
hv_row[ti] = hv_b;
}
}
}
} //extern "C"