/* This OpenCL kernel implements the Kurganov-Petrova numerical scheme for the shallow water equations, described in A. Kurganov & Guergana Petrova A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System Communications in Mathematical Sciences, 5 (2007), 133-160. Copyright (C) 2016 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * Location of thread in block */ inline __device__ int get_local_id(int dim) { switch(dim) { case 0: return threadIdx.x; case 1: return threadIdx.y; case 2: return threadIdx.z; default: return -1; } } /** * Get block index */ __device__ int get_group_id(int dim) { switch(dim) { case 0: return blockIdx.x; case 1: return blockIdx.y; case 2: return blockIdx.z; default: return -1; } } /** * Location of thread in global domain */ __device__ int get_global_id(int dim) { switch(dim) { case 0: return blockDim.x*blockIdx.x + threadIdx.x; case 1: return blockDim.y*blockIdx.y + threadIdx.y; case 2: return blockDim.z*blockIdx.z + threadIdx.z; default: return -1; } } /** * Float3 operators */ inline __device__ float3 operator*(const float a, const float3 b) { return make_float3(a*b.x, a*b.y, a*b.z); } inline __device__ float3 operator/(const float3 a, const float b) { return make_float3(a.x/b, a.y/b, a.z/b); } inline __device__ float3 operator-(const float3 a, const float3 b) { return make_float3(a.x-b.x, a.y-b.y, a.z-b.z); } inline __device__ float3 operator+(const float3 a, const float3 b) { return make_float3(a.x+b.x, a.y+b.y, a.z+b.z); } inline __device__ __host__ float clamp(const float f, const float a, const float b) { return fmaxf(a, fminf(f, b)); } /** * Reads a block of data with one ghost cell for the shallow water equations */ __device__ void readBlock1(float* h_ptr_, int h_pitch_, float* hu_ptr_, int hu_pitch_, float* hv_ptr_, int hv_pitch_, float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2], const int nx_, const int ny_) { //Index of thread within block const int tx = get_local_id(0); const int ty = get_local_id(1); //Index of block within domain const int bx = BLOCK_WIDTH * get_group_id(0); const int by = BLOCK_HEIGHT * get_group_id(1); //Read into shared memory for (int j=ty; j 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) { const int i = tx + 1; //Skip local ghost cells, i.e., +1 const int j = ty + 1; float* const h_row = (float*) ((char*) h_ptr_ + h_pitch_*tj); float* const hu_row = (float*) ((char*) hu_ptr_ + hu_pitch_*tj); float* const hv_row = (float*) ((char*) hv_ptr_ + hv_pitch_*tj); h_row[ti] = Q[0][j][i]; hu_row[ti] = Q[1][j][i]; hv_row[ti] = Q[2][j][i]; } } /** * Writes a block of data to global memory for the shallow water equations. */ __device__ void writeBlock2(float* h_ptr_, int h_pitch_, float* hu_ptr_, int hu_pitch_, float* hv_ptr_, int hv_pitch_, float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], const int nx_, const int ny_) { //Index of thread within block const int tx = get_local_id(0); const int ty = get_local_id(1); //Index of cell within domain const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2 const int tj = get_global_id(1) + 2; //Only write internal cells if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) { const int i = tx + 2; //Skip local ghost cells, i.e., +2 const int j = ty + 2; float* const h_row = (float*) ((char*) h_ptr_ + h_pitch_*tj); float* const hu_row = (float*) ((char*) hu_ptr_ + hu_pitch_*tj); float* const hv_row = (float*) ((char*) hv_ptr_ + hv_pitch_*tj); h_row[ti] = Q[0][j][i]; hu_row[ti] = Q[1][j][i]; hv_row[ti] = Q[2][j][i]; } } /** * No flow boundary conditions for the shallow water equations * with one ghost cell in each direction */ __device__ void noFlowBoundary1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2], const int nx_, const int ny_) { //Global index const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1 const int tj = get_global_id(1) + 1; //Block-local indices const int tx = get_local_id(0); const int ty = get_local_id(1); const int i = tx + 1; //Skip local ghost cells, i.e., +1 const int j = ty + 1; //Fix boundary conditions if (ti == 1) { Q[0][j][i-1] = Q[0][j][i]; Q[1][j][i-1] = -Q[1][j][i]; Q[2][j][i-1] = Q[2][j][i]; } if (ti == nx_) { Q[0][j][i+1] = Q[0][j][i]; Q[1][j][i+1] = -Q[1][j][i]; Q[2][j][i+1] = Q[2][j][i]; } if (tj == 1) { Q[0][j-1][i] = Q[0][j][i]; Q[1][j-1][i] = Q[1][j][i]; Q[2][j-1][i] = -Q[2][j][i]; } if (tj == ny_) { Q[0][j+1][i] = Q[0][j][i]; Q[1][j+1][i] = Q[1][j][i]; Q[2][j+1][i] = -Q[2][j][i]; } } /** * No flow boundary conditions for the shallow water equations * with two ghost cells in each direction */ __device__ void noFlowBoundary2(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], const int nx_, const int ny_) { //Global index const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2 const int tj = get_global_id(1) + 2; //Block-local indices const int tx = get_local_id(0); const int ty = get_local_id(1); const int i = tx + 2; //Skip local ghost cells, i.e., +2 const int j = ty + 2; if (ti == 2) { Q[0][j][i-1] = Q[0][j][i]; Q[1][j][i-1] = -Q[1][j][i]; Q[2][j][i-1] = Q[2][j][i]; Q[0][j][i-2] = Q[0][j][i+1]; Q[1][j][i-2] = -Q[1][j][i+1]; Q[2][j][i-2] = Q[2][j][i+1]; } if (ti == nx_+1) { Q[0][j][i+1] = Q[0][j][i]; Q[1][j][i+1] = -Q[1][j][i]; Q[2][j][i+1] = Q[2][j][i]; Q[0][j][i+2] = Q[0][j][i-1]; Q[1][j][i+2] = -Q[1][j][i-1]; Q[2][j][i+2] = Q[2][j][i-1]; } if (tj == 2) { Q[0][j-1][i] = Q[0][j][i]; Q[1][j-1][i] = Q[1][j][i]; Q[2][j-1][i] = -Q[2][j][i]; Q[0][j-2][i] = Q[0][j+1][i]; Q[1][j-2][i] = Q[1][j+1][i]; Q[2][j-2][i] = -Q[2][j+1][i]; } if (tj == ny_+1) { Q[0][j+1][i] = Q[0][j][i]; Q[1][j+1][i] = Q[1][j][i]; Q[2][j+1][i] = -Q[2][j][i]; Q[0][j+2][i] = Q[0][j-1][i]; Q[1][j+2][i] = Q[1][j-1][i]; Q[2][j+2][i] = -Q[2][j-1][i]; } } /** * Evolves the solution in time along the x axis (dimensional splitting) */ __device__ void evolveF1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2], float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1], const int nx_, const int ny_, const float dx_, const float dt_) { //Index of thread within block const int tx = get_local_id(0); const int ty = get_local_id(1); //Index of cell within domain const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1 const int tj = get_global_id(1) + 1; if (ti > 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) { const int i = tx + 1; //Skip local ghost cells, i.e., +1 const int j = ty + 1; Q[0][j][i] = Q[0][j][i] + (F[0][ty][tx] - F[0][ty][tx+1]) * dt_ / dx_; Q[1][j][i] = Q[1][j][i] + (F[1][ty][tx] - F[1][ty][tx+1]) * dt_ / dx_; Q[2][j][i] = Q[2][j][i] + (F[2][ty][tx] - F[2][ty][tx+1]) * dt_ / dx_; } } /** * Evolves the solution in time along the x axis (dimensional splitting) */ __device__ void evolveF2(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1], const int nx_, const int ny_, const float dx_, const float dt_) { //Index of thread within block const int tx = get_local_id(0); const int ty = get_local_id(1); //Index of cell within domain const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2 const int tj = get_global_id(1) + 2; if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) { const int i = tx + 2; //Skip local ghost cells, i.e., +1 const int j = ty + 2; Q[0][j][i] = Q[0][j][i] + (F[0][ty][tx] - F[0][ty][tx+1]) * dt_ / dx_; Q[1][j][i] = Q[1][j][i] + (F[1][ty][tx] - F[1][ty][tx+1]) * dt_ / dx_; Q[2][j][i] = Q[2][j][i] + (F[2][ty][tx] - F[2][ty][tx+1]) * dt_ / dx_; } } /** * Evolves the solution in time along the y axis (dimensional splitting) */ __device__ void evolveG1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2], float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1], const int nx_, const int ny_, const float dy_, const float dt_) { //Index of thread within block const int tx = get_local_id(0); const int ty = get_local_id(1); //Index of cell within domain const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1 const int tj = get_global_id(1) + 1; if (ti > 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) { const int i = tx + 1; //Skip local ghost cells, i.e., +1 const int j = ty + 1; Q[0][j][i] = Q[0][j][i] + (G[0][ty][tx] - G[0][ty+1][tx]) * dt_ / dy_; Q[1][j][i] = Q[1][j][i] + (G[1][ty][tx] - G[1][ty+1][tx]) * dt_ / dy_; Q[2][j][i] = Q[2][j][i] + (G[2][ty][tx] - G[2][ty+1][tx]) * dt_ / dy_; } } /** * Evolves the solution in time along the y axis (dimensional splitting) */ __device__ void evolveG2(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1], const int nx_, const int ny_, const float dy_, const float dt_) { //Index of thread within block const int tx = get_local_id(0); const int ty = get_local_id(1); //Index of cell within domain const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2 const int tj = get_global_id(1) + 2; if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) { const int i = tx + 2; //Skip local ghost cells, i.e., +2 const int j = ty + 2; Q[0][j][i] = Q[0][j][i] + (G[0][ty][tx] - G[0][ty+1][tx]) * dt_ / dy_; Q[1][j][i] = Q[1][j][i] + (G[1][ty][tx] - G[1][ty+1][tx]) * dt_ / dy_; Q[2][j][i] = Q[2][j][i] + (G[2][ty][tx] - G[2][ty+1][tx]) * dt_ / dy_; } } __device__ float3 F_func(const float3 Q, const float g) { float3 F; F.x = Q.y; //hu F.y = Q.y*Q.y / Q.x + 0.5f*g*Q.x*Q.x; //hu*hu/h + 0.5f*g*h*h; F.z = Q.y*Q.z / Q.x; //hu*hv/h; return F; }