# -*- coding: utf-8 -*- """ This python module implements the 2nd order HLL flux Copyright (C) 2016 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ #Import packages we need from GPUSimulators import Simulator, Common from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition import numpy as np from pycuda import gpuarray class HLL2 (Simulator.BaseSimulator): """ Class that solves the SW equations using the Forward-Backward linear scheme """ def __init__(self, context, h0, hu0, hv0, nx, ny, dx, dy, g, theta=1.8, cfl_scale=0.9, boundary_conditions=BoundaryCondition(), block_width=16, block_height=16): """ Initialization routine Args: h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells nx: Number of cells along x-axis ny: Number of cells along y-axis dx: Grid cell spacing along x-axis (20 000 m) dy: Grid cell spacing along y-axis (20 000 m) dt: Size of each timestep (90 s) g: Gravitational accelleration (9.81 m/s^2) """ # Call super constructor super().__init__(context, nx, ny, dx, dy, boundary_conditions, cfl_scale, 2, block_width, block_height); self.g = np.float32(g) self.theta = np.float32(theta) #Get kernels module = context.get_module("cuda/SWE2D_HLL2.cu", defines={ 'BLOCK_WIDTH': self.block_size[0], 'BLOCK_HEIGHT': self.block_size[1] }, compile_args={ 'no_extern_c': True, 'options': ["--use_fast_math"], }, jit_compile_args={}) self.kernel = module.get_function("HLL2Kernel") self.kernel.prepare("iifffffiiPiPiPiPiPiPiP") #Create data by uploading to device self.u0 = Common.ArakawaA2D(self.stream, nx, ny, 2, 2, [h0, hu0, hv0]) self.u1 = Common.ArakawaA2D(self.stream, nx, ny, 2, 2, [None, None, None]) self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32) dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0))) dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0))) dt = min(dt_x, dt_y) self.cfl_data.fill(dt, stream=self.stream) def substep(self, dt, step_number): self.substepDimsplit(dt*0.5, step_number) def substepDimsplit(self, dt, substep): self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream, self.nx, self.ny, self.dx, self.dy, dt, self.g, self.theta, substep, self.boundary_conditions, self.u0[0].data.gpudata, self.u0[0].data.strides[0], self.u0[1].data.gpudata, self.u0[1].data.strides[0], self.u0[2].data.gpudata, self.u0[2].data.strides[0], self.u1[0].data.gpudata, self.u1[0].data.strides[0], self.u1[1].data.gpudata, self.u1[1].data.strides[0], self.u1[2].data.gpudata, self.u1[2].data.strides[0], self.cfl_data.gpudata) self.u0, self.u1 = self.u1, self.u0 def getOutput(self): return self.u0 def check(self): self.u0.check() self.u1.check() def computeDt(self): max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get(); return max_dt*0.5