# -*- coding: utf-8 -*- """ This python module implements MPI simulations for benchmarking Copyright (C) 2018 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ import numpy as np import gc import time import json import logging import os # MPI from mpi4py import MPI # CUDA import pycuda.driver as cuda # Simulator engine etc from GPUSimulators import MPISimulator, Common, CudaContext from GPUSimulators import EE2D_KP07_dimsplit from GPUSimulators.helpers import InitialConditions as IC from GPUSimulators.Simulator import BoundaryCondition as BC import argparse parser = argparse.ArgumentParser(description='Strong and weak scaling experiments.') parser.add_argument('-nx', type=int, default=128) parser.add_argument('-ny', type=int, default=128) parser.add_argument('--profile', action='store_true') # default: False args = parser.parse_args() if(args.profile): # profiling: total run time t_total_start = time.time() # Get MPI COMM to use comm = MPI.COMM_WORLD #### # Initialize logging #### log_level_console = 20 log_level_file = 10 log_filename = 'mpi_' + str(comm.rank) + '.log' logger = logging.getLogger('GPUSimulators') logger.setLevel(min(log_level_console, log_level_file)) ch = logging.StreamHandler() ch.setLevel(log_level_console) logger.addHandler(ch) logger.info("Console logger using level %s", logging.getLevelName(log_level_console)) fh = logging.FileHandler(log_filename) formatter = logging.Formatter( '%(asctime)s:%(name)s:%(levelname)s: %(message)s') fh.setFormatter(formatter) fh.setLevel(log_level_file) logger.addHandler(fh) logger.info("File logger using level %s to %s", logging.getLevelName(log_level_file), log_filename) #### # Initialize MPI grid etc #### logger.info("Creating MPI grid") grid = MPISimulator.MPIGrid(MPI.COMM_WORLD) #### # Initialize CUDA #### cuda.init(flags=0) logger.info("Initializing CUDA") local_rank = grid.getLocalRank() num_cuda_devices = cuda.Device.count() cuda_device = local_rank % num_cuda_devices logger.info("Process %s using CUDA device %s", str(local_rank), str(cuda_device)) cuda_context = CudaContext.CudaContext(device=cuda_device, autotuning=False) #### # Set initial conditions #### logger.info("Generating initial conditions") nx = args.nx ny = args.ny gamma = 1.4 save_times = np.linspace(0, 0.02, 2) outfile = "mpi_out_" + str(MPI.COMM_WORLD.rank) + ".nc" save_var_names = ['rho', 'rho_u', 'rho_v', 'E'] arguments = IC.genKelvinHelmholtz(nx, ny, gamma, grid=grid) arguments['context'] = cuda_context arguments['theta'] = 1.2 arguments['grid'] = grid #### # Run simulation #### logger.info("Running simulation") # Helper function to create MPI simulator def genSim(grid, **kwargs): local_sim = EE2D_KP07_dimsplit.EE2D_KP07_dimsplit(**kwargs) sim = MPISimulator.MPISimulator(local_sim, grid) return sim outfile = Common.runSimulation( genSim, arguments, outfile, save_times, save_var_names) if(args.profile): t_total_end = time.time() t_total = t_total_end - t_total_start print("Total run time on rank " + str(MPI.COMM_WORLD.rank) + " is " + str(t_total) + " s") # write profiling to json file if(args.profile and MPI.COMM_WORLD.rank == 0): if "SLURM_JOB_ID" in os.environ: job_id = int(os.environ["SLURM_JOB_ID"]) allocated_nodes = int(os.environ["SLURM_JOB_NUM_NODES"]) allocated_gpus = int(os.environ["CUDA_VISIBLE_DEVICES"].count(",") + 1) profiling_file = "MPI_jobid_" + \ str(job_id) + "_" + str(allocated_nodes) + "_nodes_and_" + str(allocated_gpus) + "_GPUs_profiling.json" else: profiling_file = "MPI_test_profiling.json" write_profiling_data = {} write_profiling_data["total"] = t_total with open(profiling_file, "w") as write_file: json.dump(write_profiling_data, write_file) #### # Clean shutdown #### sim = None local_sim = None cuda_context = None arguments = None logging.shutdown() gc.collect() #### # Print completion and exit #### print("Completed!") exit(0)