/* These CUDA functions implement different types of numerical flux functions for the shallow water equations Copyright (C) 2016, 2017, 2018 SINTEF Digital This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include "limiters.h" __device__ float3 F_func(const float3 Q, const float g) { float3 F; F.x = Q.y; //hu F.y = Q.y*Q.y / Q.x + 0.5f*g*Q.x*Q.x; //hu*hu/h + 0.5f*g*h*h; F.z = Q.y*Q.z / Q.x; //hu*hv/h; return F; } /** * Superbee flux limiter for WAF. * Related to superbee limiter so that WAF_superbee(r, c) = 1 - (1-|c|)*superbee(r) * @param r_ the ratio of upwind change (see Toro 2001, p. 203/204) * @param c_ the courant number for wave k, dt*S_k/dx */ __device__ float WAF_superbee(float r_, float c_) { // r <= 0.0 if (r_ <= 0.0f) { return 1.0f; } // 0.0 <= r <= 1/2 else if (r_ <= 0.5f) { return 1.0f - 2.0f*(1.0f - fabsf(c_))*r_; } // 1/2 <= r <= 1 else if (r_ <= 1.0f) { return fabs(c_); } // 1 <= r <= 2 else if (r_ <= 2.0f) { return 1.0f - (1.0f - fabsf(c_))*r_; } // r >= 2 else { return 2.0f*fabsf(c_) - 1.0f; } } __device__ float WAF_albada(float r_, float c_) { if (r_ <= 0.0f) { return 1.0f; } else { return 1.0f - (1.0f - fabsf(c_)) * r_ * (1.0f + r_) / (1.0f + r_*r_); } } __device__ float WAF_minbee(float r_, float c_) { r_ = fmaxf(-1.0f, fminf(2.0f, r_)); if (r_ <= 0.0f) { return 1.0f; } if (r_ >= 0.0f && r_ <= 1.0f) { return 1.0f - (1.0f - fabsf(c_)) * r_; } else { return fabsf(c_); } } __device__ float WAF_minmod(float r_, float c_) { return 1.0f - (1.0f - fabsf(c_)) * fmaxf(0.0f, fminf(1.0f, r_)); } __device__ float limiterToWAFLimiter(float r_, float c_) { return 1.0f - (1.0f - fabsf(c_))*r_; } // Compute h in the "star region", h^dagger __device__ __inline__ float computeHStar(float h_l, float h_r, float u_l, float u_r, float c_l, float c_r, float g_) { //This estimate for the h* gives rise to spurious oscillations. //return 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r); const float h_tmp = 0.5f * (c_l + c_r) + 0.25f * (u_l - u_r); return h_tmp*h_tmp / g_; } /** * Weighted average flux (Toro 2001, p 200) for interface {i+1/2} * @param r_ The flux limiter parameter (see Toro 2001, p. 203) * @param Q_l2 Q_{i-1} * @param Q_l1 Q_{i} * @param Q_r1 Q_{i+1} * @param Q_r2 Q_{i+2} */ __device__ float3 WAF_1D_flux(const float3 Q_l2, const float3 Q_l1, const float3 Q_r1, const float3 Q_r2, const float g_, const float dx_, const float dt_) { const float h_l = Q_l1.x; const float h_r = Q_r1.x; const float h_l2 = Q_l2.x; const float h_r2 = Q_r2.x; // Calculate velocities const float u_l = Q_l1.y / h_l; const float u_r = Q_r1.y / h_r; const float u_l2 = Q_l2.y / h_l2; const float u_r2 = Q_r2.y / h_r2; const float v_l = Q_l1.z / h_l; const float v_r = Q_r1.z / h_r; const float v_l2 = Q_l2.z / h_l2; const float v_r2 = Q_r2.z / h_r2; // Estimate the potential wave speeds const float c_l = sqrt(g_*h_l); const float c_r = sqrt(g_*h_r); const float c_l2 = sqrt(g_*h_l2); const float c_r2 = sqrt(g_*h_r2); // Compute h in the "star region", h^dagger const float h_dag_l = computeHStar(h_l2, h_l, u_l2, u_l, c_l2, c_l, g_); const float h_dag = computeHStar( h_l, h_r, u_l, u_r, c_l, c_r, g_); const float h_dag_r = computeHStar( h_r, h_r2, u_r, u_r2, c_r, c_r2, g_); const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag ) ) / h_l; const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag ) ) / h_r; const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f; const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f; // Compute wave speed estimates const float S_l = u_l - c_l*q_l; const float S_r = u_r + c_r*q_r; const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) ); const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * make_float3(1.0, S_star, v_l); const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * make_float3(1.0, S_star, v_r); // Estimate the fluxes in the four regions const float3 F_1 = F_func(Q_l1, g_); const float3 F_4 = F_func(Q_r1, g_); const float3 F_2 = F_1 + S_l*(Q_star_l - Q_l1); const float3 F_3 = F_4 + S_r*(Q_star_r - Q_r1); //const float3 F_2 = F_func(Q_star_l, g_); //const float3 F_3 = F_func(Q_star_r, g_); // Compute the courant numbers for the waves const float c_1 = S_l * dt_ / dx_; const float c_2 = S_star * dt_ / dx_; const float c_3 = S_r * dt_ / dx_; // Compute the "upwind change" vectors for the i-3/2 and i+3/2 interfaces const float eps = 1.0e-6f; const float r_1 = desingularize( (c_1 > 0.0f) ? (h_dag_l - h_l2) : (h_dag_r - h_r), eps) / desingularize((h_dag - h_l), eps); const float r_2 = desingularize( (c_2 > 0.0f) ? (v_l - v_l2) : (v_r2 - v_r), eps ) / desingularize((v_r - v_l), eps); const float r_3 = desingularize( (c_3 > 0.0f) ? (h_l - h_dag_l) : (h_r2 - h_dag_r), eps ) / desingularize((h_r - h_dag), eps); // Compute the limiter // We use h for the nonlinear waves, and v for the middle shear wave const float A_1 = copysign(1.0f, c_1) * limiterToWAFLimiter(generalized_minmod(r_1, 1.9f), c_1); const float A_2 = copysign(1.0f, c_2) * limiterToWAFLimiter(generalized_minmod(r_2, 1.9f), c_2); const float A_3 = copysign(1.0f, c_3) * limiterToWAFLimiter(generalized_minmod(r_3, 1.9f), c_3); //Average the fluxes const float3 flux = 0.5f*( F_1 + F_4 ) - 0.5f*( A_1 * (F_2 - F_1) + A_2 * (F_3 - F_2) + A_3 * (F_4 - F_3) ); return flux; } /** * Central upwind flux function */ __device__ float3 CentralUpwindFlux(const float3 Qm, float3 Qp, const float g) { const float3 Fp = F_func(Qp, g); const float up = Qp.y / Qp.x; // hu / h const float cp = sqrt(g*Qp.x); // sqrt(g*h) const float3 Fm = F_func(Qm, g); const float um = Qm.y / Qm.x; // hu / h const float cm = sqrt(g*Qm.x); // sqrt(g*h) const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am); } /** * Godunovs centered scheme (Toro 2001, p 165) */ __device__ float3 GodC_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) { const float3 F_l = F_func(Q_l, g_); const float3 F_r = F_func(Q_r, g_); const float3 Q_godc = 0.5f*(Q_l + Q_r) + (dt_/dx_)*(F_l - F_r); return F_func(Q_godc, g_); } /** * Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180) */ __device__ float3 HLL_flux(const float3 Q_l, const float3 Q_r, const float g_) { const float h_l = Q_l.x; const float h_r = Q_r.x; // Calculate velocities const float u_l = Q_l.y / h_l; const float u_r = Q_r.y / h_r; // Estimate the potential wave speeds const float c_l = sqrt(g_*h_l); const float c_r = sqrt(g_*h_r); // Compute h in the "star region", h^dagger const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r); const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) ); const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) ); const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f; const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f; // Compute wave speed estimates const float S_l = u_l - c_l*q_l; const float S_r = u_r + c_r*q_r; //Upwind selection if (S_l >= 0.0f) { return F_func(Q_l, g_); } else if (S_r <= 0.0f) { return F_func(Q_r, g_); } //Or estimate flux in the star region else { const float3 F_l = F_func(Q_l, g_); const float3 F_r = F_func(Q_r, g_); const float3 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l); return flux; } } /** * Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 181) */ __device__ float3 HLLC_flux(const float3 Q_l, const float3 Q_r, const float g_) { const float h_l = Q_l.x; const float h_r = Q_r.x; // Calculate velocities const float u_l = Q_l.y / h_l; const float u_r = Q_r.y / h_r; // Estimate the potential wave speeds const float c_l = sqrt(g_*h_l); const float c_r = sqrt(g_*h_r); // Compute h in the "star region", h^dagger const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r); const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) ); const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) ); const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f; const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f; // Compute wave speed estimates const float S_l = u_l - c_l*q_l; const float S_r = u_r + c_r*q_r; const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) ); const float3 F_l = F_func(Q_l, g_); const float3 F_r = F_func(Q_r, g_); //Upwind selection if (S_l >= 0.0f) { return F_l; } else if (S_r <= 0.0f) { return F_r; } //Or estimate flux in the "left star" region else if (S_l <= 0.0f && 0.0f <=S_star) { const float v_l = Q_l.z / h_l; const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * make_float3(1, S_star, v_l); const float3 flux = F_l + S_l*(Q_star_l - Q_l); return flux; } //Or estimate flux in the "righ star" region else if (S_star <= 0.0f && 0.0f <=S_r) { const float v_r = Q_r.z / h_r; const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * make_float3(1, S_star, v_r); const float3 flux = F_r + S_r*(Q_star_r - Q_r); return flux; } else { return make_float3(-99999.9f, -99999.9f, -99999.9f); //Something wrong here } } /** * Lax-Friedrichs flux (Toro 2001, p 163) */ __device__ float3 LxF_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) { const float3 F_l = F_func(Q_l, g_); const float3 F_r = F_func(Q_r, g_); return 0.5f*(F_l + F_r) + (dx_/(2.0f*dt_))*(Q_l - Q_r); } /** * Lax-Friedrichs extended to 2D */ __device__ float3 LxF_2D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) { const float3 F_l = F_func(Q_l, g_); const float3 F_r = F_func(Q_r, g_); //Note numerical diffusion for 2D here (0.25) return 0.5f*(F_l + F_r) + (dx_/(4.0f*dt_))*(Q_l - Q_r); } /** * Richtmeyer / Two-step Lax-Wendroff flux (Toro 2001, p 164) */ __device__ float3 LxW2_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) { const float3 F_l = F_func(Q_l, g_); const float3 F_r = F_func(Q_r, g_); const float3 Q_lw2 = 0.5f*(Q_l + Q_r) + (dt_/(2.0f*dx_))*(F_l - F_r); return F_func(Q_lw2, g_); } /** * First Ordered Centered (Toro 2001, p.163) */ __device__ float3 FORCE_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) { const float3 F_lf = LxF_1D_flux(Q_l, Q_r, g_, dx_, dt_); const float3 F_lw2 = LxW2_1D_flux(Q_l, Q_r, g_, dx_, dt_); return 0.5f*(F_lf + F_lw2); }