# -*- coding: utf-8 -*- """ This python module implements Cuda context handling Copyright (C) 2018 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ from GPUSimulators.Simulator import BoundaryCondition import numpy as np import gc def getExtent(width, height, nx, ny, grid): if grid is not None: gx = grid.grid[0] gy = grid.grid[1] i, j = grid.getCoordinate() dx = (width / gx) / nx dy = (height / gy) / ny x0 = width*i/gx + 0.5*dx y0 = height*j/gy + 0.5*dy x1 = width*(i+1)/gx - 0.5*dx y1 = height*(j+1)/gy - 0.5*dx else: dx = width / nx dy = height / ny x0 = 0.5*dx y0 = 0.5*dy x1 = width-0.5*dx y1 = height-0.5*dy return [x0, x1, y0, y1, dx, dy] def downsample(highres_solution, x_factor, y_factor=None): if (y_factor == None): y_factor = x_factor assert(highres_solution.shape[1] % x_factor == 0) assert(highres_solution.shape[0] % y_factor == 0) if (x_factor*y_factor == 1): return highres_solution if (len(highres_solution.shape) == 1): highres_solution = highres_solution.reshape((1, highres_solution.size)) nx = highres_solution.shape[1] / x_factor ny = highres_solution.shape[0] / y_factor return highres_solution.reshape([int(ny), int(y_factor), int(nx), int(x_factor)]).mean(3).mean(1) def bump(nx, ny, width, height, bump_size=None, ref_nx=None, ref_ny=None, x_center=0.5, y_center=0.5, h_ref=0.5, h_amp=0.1, u_ref=0.0, u_amp=0.1, v_ref=0.0, v_amp=0.1): if (ref_nx == None): ref_nx = nx assert(ref_nx >= nx) if (ref_ny == None): ref_ny = ny assert(ref_ny >= ny) if (bump_size == None): bump_size = width/5.0 ref_dx = width / float(ref_nx) ref_dy = height / float(ref_ny) x_center = ref_dx*ref_nx*x_center y_center = ref_dy*ref_ny*y_center x = ref_dx*(np.arange(0, ref_nx, dtype=np.float32)+0.5) - x_center y = ref_dy*(np.arange(0, ref_ny, dtype=np.float32)+0.5) - y_center xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy') r = np.sqrt(xv**2 + yv**2) xv = None yv = None gc.collect() #Generate highres then downsample #h_highres = 0.5 + 0.1*np.exp(-(xv**2/size + yv**2/size)) h_highres = h_ref + h_amp*0.5*(1.0 + np.cos(np.pi*r/bump_size)) * (r < bump_size) h = downsample(h_highres, ref_nx/nx, ref_ny/ny) h_highres = None gc.collect() #hu_highres = 0.1*np.exp(-(xv**2/size + yv**2/size)) u_highres = u_ref + u_amp*0.5*(1.0 + np.cos(np.pi*r/bump_size)) * (r < bump_size) hu = downsample(u_highres, ref_nx/nx, ref_ny/ny)*h u_highres = None gc.collect() #hu_highres = 0.1*np.exp(-(xv**2/size + yv**2/size)) v_highres = v_ref + v_amp*0.5*(1.0 + np.cos(np.pi*r/bump_size)) * (r < bump_size) hv = downsample(v_highres, ref_nx/nx, ref_ny/ny)*h v_highres = None gc.collect() dx = width/nx dy = height/ny return h, hu, hv, dx, dy def genShockBubble(nx, ny, gamma, grid=None): """ Generate Shock-bubble interaction case for the Euler equations """ width = 4.0 height = 1.0 g = 0.0 rho = np.ones((ny, nx), dtype=np.float32) u = np.zeros((ny, nx), dtype=np.float32) v = np.zeros((ny, nx), dtype=np.float32) E = np.zeros((ny, nx), dtype=np.float32) p = np.ones((ny, nx), dtype=np.float32) x0, x1, y0, y1, dx, dy = getExtent(width, height, nx, ny, grid) x = np.linspace(x0, x1, nx, dtype=np.float32) y = np.linspace(y0, y1, ny, dtype=np.float32) xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy') #Bubble radius = 0.25 x_center = 0.5 y_center = 0.5 bubble = np.sqrt((xv-x_center)**2+(yv-y_center)**2) <= radius rho = np.where(bubble, 0.1, rho) #Left boundary left = (xv < 0.1) rho = np.where(left, 3.81250, rho) u = np.where(left, 2.57669, u) #Energy p = np.where(left, 10.0, p) E = 0.5*rho*(u**2+v**2) + p/(gamma-1.0) bc = BoundaryCondition({ 'north': BoundaryCondition.Type.Reflective, 'south': BoundaryCondition.Type.Reflective, 'east': BoundaryCondition.Type.Periodic, 'west': BoundaryCondition.Type.Periodic }) #Construct simulator arguments = { 'rho': rho, 'rho_u': rho*u, 'rho_v': rho*v, 'E': E, 'nx': nx, 'ny': ny, 'dx': dx, 'dy': dy, 'g': g, 'gamma': gamma, 'boundary_conditions': bc } return arguments def genKelvinHelmholtz(nx, ny, gamma, roughness=0.125, grid=None): """ Roughness parameter in (0, 1.0] determines how "squiggly" the interface betweeen the zones is """ def genZones(nx, ny, n): """ Generates the zones of the two fluids of K-H """ zone = np.zeros((ny, nx), dtype=np.int32) def genSmoothRandom(nx, n): n = max(1, min(n, nx)) if n == nx: return np.random.random(nx)-0.5 else: from scipy.interpolate import interp1d #Control points and interpolator xp = np.linspace(0.0, 1.0, n) yp = np.random.random(n) - 0.5 if (n == 1): kind = 'nearest' elif (n == 2): kind = 'linear' elif (n == 3): kind = 'quadratic' else: kind = 'cubic' f = interp1d(xp, yp, kind=kind) #Interpolation points x = np.linspace(0.0, 1.0, nx) return f(x) x0, x1, y0, y1, _, dy = getExtent(1.0, 1.0, nx, ny, grid) x = np.linspace(x0, x1, nx) y = np.linspace(y0, y1, ny) _, y = np.meshgrid(x, y) #print(y+a[0]) a = genSmoothRandom(nx, n)*dy zone = np.where(y > 0.25+a, zone, 1) a = genSmoothRandom(nx, n)*dy zone = np.where(y < 0.75+a, zone, 1) return zone width = 2.0 height = 1.0 g = 0.0 gamma = 1.4 rho = np.empty((ny, nx), dtype=np.float32) u = np.empty((ny, nx), dtype=np.float32) v = np.zeros((ny, nx), dtype=np.float32) p = 2.5*np.ones((ny, nx), dtype=np.float32) #Generate the different zones zones = genZones(nx, ny, max(1, min(nx, int(nx*roughness)))) #Zone 0 zone0 = zones == 0 rho = np.where(zone0, 1.0, rho) u = np.where(zone0, 0.5, u) #Zone 1 zone1 = zones == 1 rho = np.where(zone1, 2.0, rho) u = np.where(zone1, -0.5, u) E = 0.5*rho*(u**2+v**2) + p/(gamma-1.0) _, _, _, _, dx, dy = getExtent(width, height, nx, ny, grid) bc = BoundaryCondition({ 'north': BoundaryCondition.Type.Periodic, 'south': BoundaryCondition.Type.Periodic, 'east': BoundaryCondition.Type.Periodic, 'west': BoundaryCondition.Type.Periodic }) #Construct simulator arguments = { 'rho': rho, 'rho_u': rho*u, 'rho_v': rho*v, 'E': E, 'nx': nx, 'ny': ny, 'dx': dx, 'dy': dy, 'g': g, 'gamma': gamma, 'boundary_conditions': bc } return arguments def genRayleighTaylor(nx, ny, gamma, version=0, grid=None): """ Generates Rayleigh-Taylor instability case """ width = 0.5 height = 1.5 g = 0.1 rho = np.zeros((ny, nx), dtype=np.float32) u = np.zeros((ny, nx), dtype=np.float32) v = np.zeros((ny, nx), dtype=np.float32) p = np.zeros((ny, nx), dtype=np.float32) x0, x1, y0, y1, dx, dy = getExtent(width, height, nx, ny, grid) x = np.linspace(x0, x1, nx, dtype=np.float32)-width*0.5 y = np.linspace(y0, y1, ny, dtype=np.float32)-height*0.5 xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy') #This gives a squigly interfact if (version == 0): y_threshold = 0.01*np.cos(2*np.pi*np.abs(x)/0.5) rho = np.where(yv <= y_threshold, 1.0, rho) rho = np.where(yv > y_threshold, 2.0, rho) elif (version == 1): rho = np.where(yv <= 0.0, 1.0, rho) rho = np.where(yv > 0.0, 2.0, rho) v = 0.01*(1.0 + np.cos(2*np.pi*xv/0.5))/4 else: assert False, "Invalid version" p = 2.5 - rho*g*yv E = 0.5*rho*(u**2+v**2) + p/(gamma-1.0) bc = BoundaryCondition({ 'north': BoundaryCondition.Type.Reflective, 'south': BoundaryCondition.Type.Reflective, 'east': BoundaryCondition.Type.Reflective, 'west': BoundaryCondition.Type.Reflective }) #Construct simulator arguments = { 'rho': rho, 'rho_u': rho*u, 'rho_v': rho*v, 'E': E, 'nx': nx, 'ny': ny, 'dx': dx, 'dy': dy, 'g': g, 'gamma': gamma, 'boundary_conditions': bc } return arguments