# -*- coding: utf-8 -*- """ This python module implements Cuda context handling Copyright (C) 2018 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ import os import numpy as np import time import re import io import hashlib import logging import gc import pycuda.compiler as cuda_compiler import pycuda.gpuarray import pycuda.driver as cuda from GPUSimulators import Autotuner, Common class CudaContext(object): """ Class which keeps track of the CUDA context and some helper functions """ def __init__(self, device=None, context_flags=None, use_cache=True, autotuning=True): """ Create a new CUDA context Args: device: To use a specific GPU, provide either an ``id`` or ``pci_bus_id`` for the GPU. context_flags: To set a blocking context, provide ``cuda.ctx_flags.SCHED_BLOCKING_SYNC``. """ self.use_cache = use_cache self.logger = logging.getLogger(__name__) self.modules = {} self.module_path = os.path.dirname(os.path.realpath(__file__)) #Initialize cuda (must be first call to PyCUDA) cuda.init(flags=0) self.logger.info("PyCUDA version %s", str(pycuda.VERSION_TEXT)) #Print some info about CUDA self.logger.info("CUDA version %s", str(cuda.get_version())) self.logger.info("Driver version %s", str(cuda.get_driver_version())) if device is None: device = 0 self.cuda_device = cuda.Device(device) self.logger.info("Using device %d/%d '%s' (%s) GPU", device, cuda.Device.count(), self.cuda_device.name(), self.cuda_device.pci_bus_id()) self.logger.debug(" => compute capability: %s", str(self.cuda_device.compute_capability())) # Create the CUDA context if context_flags is None: context_flags=cuda.ctx_flags.SCHED_AUTO self.cuda_context = self.cuda_device.make_context(flags=context_flags) free, total = cuda.mem_get_info() self.logger.debug(" => memory: %d / %d MB available", int(free/(1024*1024)), int(total/(1024*1024))) self.logger.info("Created context handle <%s>", str(self.cuda_context.handle)) #Create cache dir for cubin files self.cache_path = os.path.join(self.module_path, "cuda_cache") if (self.use_cache): if not os.path.isdir(self.cache_path): os.mkdir(self.cache_path) self.logger.info("Using CUDA cache dir %s", self.cache_path) self.autotuner = None if (autotuning): self.logger.info("Autotuning enabled. It may take several minutes to run the code the first time: have patience") self.autotuner = Autotuner.Autotuner() def __del__(self, *args): self.logger.info("Cleaning up CUDA context handle <%s>", str(self.cuda_context.handle)) # Loop over all contexts in stack, and remove "this" other_contexts = [] while (cuda.Context.get_current() != None): context = cuda.Context.get_current() if (context.handle != self.cuda_context.handle): self.logger.debug("<%s> Popping <%s> (*not* ours)", str(self.cuda_context.handle), str(context.handle)) other_contexts = [context] + other_contexts cuda.Context.pop() else: self.logger.debug("<%s> Popping <%s> (ours)", str(self.cuda_context.handle), str(context.handle)) cuda.Context.pop() # Add all the contexts we popped that were not our own for context in other_contexts: self.logger.debug("<%s> Pushing <%s>", str(self.cuda_context.handle), str(context.handle)) cuda.Context.push(context) self.logger.debug("<%s> Detaching", str(self.cuda_context.handle)) self.cuda_context.detach() def __str__(self): return "CudaContext id " + str(self.cuda_context.handle) def hash_kernel(self, kernel_filename: str, include_dirs: list[str]) -> str: """ Generate a kernel ID for our caches. Args: kernel_filename: Path to the kernel file. include_dirs: Directories to search for ``#include`` in the kernel file. Returns: MD5 has for the kernel in the cache. Raises: RuntimeError: When the number of ``#include``s surpassed the maximum (101) permitted ``#include``s. """ num_includes = 0 max_includes = 100 kernel_hasher = hashlib.md5() logger = logging.getLogger(__name__) # Loop over file and includes, and check if something has changed files = [kernel_filename] while len(files): if (num_includes > max_includes): raise RuntimeError("Maximum number of includes reached - circular include in {:}?".format(kernel_filename)) filename = files.pop() #logger.debug("Hashing %s", filename) modified = os.path.getmtime(filename) # Open the file with io.open(filename, "r") as file: # Search for #inclue and also hash the file file_str = file.read() kernel_hasher.update(file_str.encode('utf-8')) kernel_hasher.update(str(modified).encode('utf-8')) #Find all includes includes = re.findall('^\W*#include\W+(.+?)\W*$', file_str, re.M) # Loop over everything that looks like an include for include_file in includes: #Search through include directories for the file file_path = os.path.dirname(filename) for include_path in [file_path] + include_dirs: # If we find it, add it to list of files to check temp_path = os.path.join(include_path, include_file) if (os.path.isfile(temp_path)): files = files + [temp_path] num_includes = num_includes + 1 #For circular includes... break return kernel_hasher.hexdigest() def get_module(self, kernel_filename: str, include_dirs: list[str]=[], \ defines: dict={}, \ compile_args: dict={'no_extern_c': True}, jit_compile_args: dict={}) -> cuda.Module: """ Reads a text file and creates an OpenCL kernel from that. Args: kernel_filename: The file to use for the kernel. include_dirs: List of directories for the ``#include``s referenced. defines: Adds ``#define`` tags to the kernel, such as: ``#define key value``. compile_args: Adds other compiler options (parameters) for ``pycuda.compiler.compile()``. jit_compile_args: Adds other just-in-time compilation options (parameters) for ``pycuda.driver.module_from_buffer()``. Returns: The kernel module (pycuda.driver.Module). """ def cuda_compile_message_handler(compile_success_bool, info_str, error_str): """ Helper function to print compilation output """ self.logger.debug("Compilation returned %s", str(compile_success_bool)) if info_str: self.logger.debug("Info: %s", info_str) if error_str: self.logger.debug("Error: %s", error_str) kernel_filename = os.path.normpath(kernel_filename) kernel_path = os.path.abspath(os.path.join(self.module_path, kernel_filename)) #self.logger.debug("Getting %s", kernel_filename) # Create a hash of the kernel options options_hasher = hashlib.md5() options_hasher.update(str(defines).encode('utf-8') + str(compile_args).encode('utf-8')); options_hash = options_hasher.hexdigest() # Create hash of kernel souce source_hash = self.hash_kernel( \ kernel_path, \ include_dirs=[self.module_path] + include_dirs) # Create final hash root, ext = os.path.splitext(kernel_filename) kernel_hash = root \ + "_" + source_hash \ + "_" + options_hash \ + ext cached_kernel_filename = os.path.join(self.cache_path, kernel_hash) # If we have the kernel in our hashmap, return it if (kernel_hash in self.modules.keys()): self.logger.debug("Found kernel %s cached in hashmap (%s)", kernel_filename, kernel_hash) return self.modules[kernel_hash] # If we have it on disk, return it elif (self.use_cache and os.path.isfile(cached_kernel_filename)): self.logger.debug("Found kernel %s cached on disk (%s)", kernel_filename, kernel_hash) with io.open(cached_kernel_filename, "rb") as file: file_str = file.read() module = cuda.module_from_buffer(file_str, message_handler=cuda_compile_message_handler, **jit_compile_args) self.modules[kernel_hash] = module return module # Otherwise, compile it from source else: self.logger.debug("Compiling %s (%s)", kernel_filename, kernel_hash) #Create kernel string kernel_string = "" for key, value in defines.items(): kernel_string += "#define {:s} {:s}\n".format(str(key), str(value)) kernel_string += '#include "{:s}"'.format(os.path.join(self.module_path, kernel_filename)) if (self.use_cache): cached_kernel_dir = os.path.dirname(cached_kernel_filename) if not os.path.isdir(cached_kernel_dir): os.mkdir(cached_kernel_dir) with io.open(cached_kernel_filename + ".txt", "w") as file: file.write(kernel_string) with Common.Timer("compiler") as timer: import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="The CUDA compiler succeeded, but said the following:\nkernel.cu", category=UserWarning) cubin = cuda_compiler.compile(kernel_string, include_dirs=include_dirs, cache_dir=False, **compile_args) module = cuda.module_from_buffer(cubin, message_handler=cuda_compile_message_handler, **jit_compile_args) if (self.use_cache): with io.open(cached_kernel_filename, "wb") as file: file.write(cubin) self.modules[kernel_hash] = module return module def clear_kernel_cache(self): """ Clears the kernel cache (useful for debugging & development) """ self.logger.debug("Clearing cache") self.modules = {} gc.collect() def synchronize(self): """ Synchronizes all streams etc """ self.cuda_context.synchronize()