# -*- coding: utf-8 -*- """ This python module implements the Kurganov-Petrova numerical scheme for the shallow water equations, described in A. Kurganov & Guergana Petrova A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System Communications in Mathematical Sciences, 5 (2007), 133-160. Copyright (C) 2016 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ #Import packages we need import numpy as np import pycuda.compiler as cuda_compiler import pycuda.gpuarray import pycuda.driver as cuda from SWESimulators import Common """ Class that solves the SW equations using the dimentionally split KP07 scheme """ class KP07_dimsplit: """ Initialization routine h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells nx: Number of cells along x-axis ny: Number of cells along y-axis dx: Grid cell spacing along x-axis (20 000 m) dy: Grid cell spacing along y-axis (20 000 m) dt: Size of each timestep (90 s) g: Gravitational accelleration (9.81 m/s^2) """ def __init__(self, \ context, \ h0, hu0, hv0, \ nx, ny, \ dx, dy, dt, \ g, \ theta=1.3, \ block_width=16, block_height=16): #Create a CUDA stream self.stream = cuda.Stream() #Get kernels self.kp07_dimsplit_module = context.get_kernel("KP07_dimsplit_kernel.cu", block_width, block_height) self.kp07_dimsplit_kernel = self.kp07_dimsplit_module.get_function("KP07DimsplitKernel") self.kp07_dimsplit_kernel.prepare("iifffffiPiPiPiPiPiPi") #Create data by uploading to device ghost_cells_x = 2 ghost_cells_y = 2 self.data = Common.SWEDataArakawaA(self.stream, nx, ny, ghost_cells_x, ghost_cells_y, h0, hu0, hv0) #Save input parameters #Notice that we need to specify them in the correct dataformat for the #OpenCL kernel self.nx = np.int32(nx) self.ny = np.int32(ny) self.dx = np.float32(dx) self.dy = np.float32(dy) self.dt = np.float32(dt) self.g = np.float32(g) self.theta = np.float32(theta) #Initialize time self.t = np.float32(0.0) #Compute kernel launch parameters self.local_size = (block_width, block_height, 1) self.global_size = ( \ int(np.ceil(self.nx / float(self.local_size[0]))), \ int(np.ceil(self.ny / float(self.local_size[1]))) \ ) def __str__(self): return "Kurganov-Petrova 2007 dimensionally split" """ Function which steps n timesteps """ def step(self, t_end=0.0): n = int(t_end / (2.0*self.dt) + 1) for i in range(0, n): #Dimensional splitting: second order accurate for every other timestep, #thus run two timesteps in a go #Compute timestep local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt)) if (local_dt <= 0.0): break #Along X, then Y self.kp07_dimsplit_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \ self.nx, self.ny, \ self.dx, self.dy, local_dt, \ self.g, \ self.theta, \ np.int32(0), \ self.data.h0.data.gpudata, self.data.h0.pitch, \ self.data.hu0.data.gpudata, self.data.hu0.pitch, \ self.data.hv0.data.gpudata, self.data.hv0.pitch, \ self.data.h1.data.gpudata, self.data.h1.pitch, \ self.data.hu1.data.gpudata, self.data.hu1.pitch, \ self.data.hv1.data.gpudata, self.data.hv1.pitch) self.data.swap() #Along Y, then X self.kp07_dimsplit_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \ self.nx, self.ny, \ self.dx, self.dy, local_dt, \ self.g, \ self.theta, \ np.int32(1), \ self.data.h0.data.gpudata, self.data.h0.pitch, \ self.data.hu0.data.gpudata, self.data.hu0.pitch, \ self.data.hv0.data.gpudata, self.data.hv0.pitch, \ self.data.h1.data.gpudata, self.data.h1.pitch, \ self.data.hu1.data.gpudata, self.data.hu1.pitch, \ self.data.hv1.data.gpudata, self.data.hv1.pitch) self.data.swap() self.t += 2.0*local_dt return self.t, 2*n def download(self): return self.data.download(self.stream)