/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/**
* Location of thread in block
*/
inline __device__ int get_local_id(int dim) {
switch(dim) {
case 0: return threadIdx.x;
case 1: return threadIdx.y;
case 2: return threadIdx.z;
default: return -1;
}
}
/**
* Get block index
*/
__device__ int get_group_id(int dim) {
switch(dim) {
case 0: return blockIdx.x;
case 1: return blockIdx.y;
case 2: return blockIdx.z;
default: return -1;
}
}
/**
* Location of thread in global domain
*/
__device__ int get_global_id(int dim) {
switch(dim) {
case 0: return blockDim.x*blockIdx.x + threadIdx.x;
case 1: return blockDim.y*blockIdx.y + threadIdx.y;
case 2: return blockDim.z*blockIdx.z + threadIdx.z;
default: return -1;
}
}
/**
* Float3 operators
*/
inline __device__ float3 operator*(const float a, const float3 b) {
return make_float3(a*b.x, a*b.y, a*b.z);
}
inline __device__ float3 operator/(const float3 a, const float b) {
return make_float3(a.x/b, a.y/b, a.z/b);
}
inline __device__ float3 operator-(const float3 a, const float3 b) {
return make_float3(a.x-b.x, a.y-b.y, a.z-b.z);
}
inline __device__ float3 operator+(const float3 a, const float3 b) {
return make_float3(a.x+b.x, a.y+b.y, a.z+b.z);
}
inline __device__ __host__ float clamp(const float f, const float a, const float b) {
return fmaxf(a, fminf(f, b));
}
/**
* Reads a block of data with one ghost cell for the shallow water equations
*/
__device__ void readBlock1(float* h_ptr_, int h_pitch_,
float* hu_ptr_, int hu_pitch_,
float* hv_ptr_, int hv_pitch_,
float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const int nx_, const int ny_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of block within domain
const int bx = BLOCK_WIDTH * get_group_id(0);
const int by = BLOCK_HEIGHT * get_group_id(1);
//Read into shared memory
for (int j=ty; j 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) {
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
float* const h_row = (float*) ((char*) h_ptr_ + h_pitch_*tj);
float* const hu_row = (float*) ((char*) hu_ptr_ + hu_pitch_*tj);
float* const hv_row = (float*) ((char*) hv_ptr_ + hv_pitch_*tj);
h_row[ti] = Q[0][j][i];
hu_row[ti] = Q[1][j][i];
hv_row[ti] = Q[2][j][i];
}
}
/**
* Writes a block of data to global memory for the shallow water equations.
*/
__device__ void writeBlock2(float* h_ptr_, int h_pitch_,
float* hu_ptr_, int hu_pitch_,
float* hv_ptr_, int hv_pitch_,
float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const int nx_, const int ny_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
//Only write internal cells
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
float* const h_row = (float*) ((char*) h_ptr_ + h_pitch_*tj);
float* const hu_row = (float*) ((char*) hu_ptr_ + hu_pitch_*tj);
float* const hv_row = (float*) ((char*) hv_ptr_ + hv_pitch_*tj);
h_row[ti] = Q[0][j][i];
hu_row[ti] = Q[1][j][i];
hv_row[ti] = Q[2][j][i];
}
}
/**
* No flow boundary conditions for the shallow water equations
* with one ghost cell in each direction
*/
__device__ void noFlowBoundary1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2], const int nx_, const int ny_) {
//Global index
const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1
const int tj = get_global_id(1) + 1;
//Block-local indices
const int tx = get_local_id(0);
const int ty = get_local_id(1);
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
//Fix boundary conditions
if (ti == 1) {
Q[0][j][i-1] = Q[0][j][i];
Q[1][j][i-1] = -Q[1][j][i];
Q[2][j][i-1] = Q[2][j][i];
}
if (ti == nx_) {
Q[0][j][i+1] = Q[0][j][i];
Q[1][j][i+1] = -Q[1][j][i];
Q[2][j][i+1] = Q[2][j][i];
}
if (tj == 1) {
Q[0][j-1][i] = Q[0][j][i];
Q[1][j-1][i] = Q[1][j][i];
Q[2][j-1][i] = -Q[2][j][i];
}
if (tj == ny_) {
Q[0][j+1][i] = Q[0][j][i];
Q[1][j+1][i] = Q[1][j][i];
Q[2][j+1][i] = -Q[2][j][i];
}
}
/**
* No flow boundary conditions for the shallow water equations
* with two ghost cells in each direction
*/
__device__ void noFlowBoundary2(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], const int nx_, const int ny_) {
//Global index
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
//Block-local indices
const int tx = get_local_id(0);
const int ty = get_local_id(1);
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
if (ti == 2) {
Q[0][j][i-1] = Q[0][j][i];
Q[1][j][i-1] = -Q[1][j][i];
Q[2][j][i-1] = Q[2][j][i];
Q[0][j][i-2] = Q[0][j][i+1];
Q[1][j][i-2] = -Q[1][j][i+1];
Q[2][j][i-2] = Q[2][j][i+1];
}
if (ti == nx_+1) {
Q[0][j][i+1] = Q[0][j][i];
Q[1][j][i+1] = -Q[1][j][i];
Q[2][j][i+1] = Q[2][j][i];
Q[0][j][i+2] = Q[0][j][i-1];
Q[1][j][i+2] = -Q[1][j][i-1];
Q[2][j][i+2] = Q[2][j][i-1];
}
if (tj == 2) {
Q[0][j-1][i] = Q[0][j][i];
Q[1][j-1][i] = Q[1][j][i];
Q[2][j-1][i] = -Q[2][j][i];
Q[0][j-2][i] = Q[0][j+1][i];
Q[1][j-2][i] = Q[1][j+1][i];
Q[2][j-2][i] = -Q[2][j+1][i];
}
if (tj == ny_+1) {
Q[0][j+1][i] = Q[0][j][i];
Q[1][j+1][i] = Q[1][j][i];
Q[2][j+1][i] = -Q[2][j][i];
Q[0][j+2][i] = Q[0][j-1][i];
Q[1][j+2][i] = Q[1][j-1][i];
Q[2][j+2][i] = -Q[2][j-1][i];
}
}
/**
* Evolves the solution in time along the x axis (dimensional splitting)
*/
__device__ void evolveF1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const int nx_, const int ny_,
const float dx_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1
const int tj = get_global_id(1) + 1;
if (ti > 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) {
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
Q[0][j][i] = Q[0][j][i] + (F[0][ty][tx] - F[0][ty][tx+1]) * dt_ / dx_;
Q[1][j][i] = Q[1][j][i] + (F[1][ty][tx] - F[1][ty][tx+1]) * dt_ / dx_;
Q[2][j][i] = Q[2][j][i] + (F[2][ty][tx] - F[2][ty][tx+1]) * dt_ / dx_;
}
}
/**
* Evolves the solution in time along the x axis (dimensional splitting)
*/
__device__ void evolveF2(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const int nx_, const int ny_,
const float dx_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +1
const int j = ty + 2;
Q[0][j][i] = Q[0][j][i] + (F[0][ty][tx] - F[0][ty][tx+1]) * dt_ / dx_;
Q[1][j][i] = Q[1][j][i] + (F[1][ty][tx] - F[1][ty][tx+1]) * dt_ / dx_;
Q[2][j][i] = Q[2][j][i] + (F[2][ty][tx] - F[2][ty][tx+1]) * dt_ / dx_;
}
}
/**
* Evolves the solution in time along the y axis (dimensional splitting)
*/
__device__ void evolveG1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const int nx_, const int ny_,
const float dy_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1
const int tj = get_global_id(1) + 1;
if (ti > 0 && ti < nx_+1 && tj > 0 && tj < ny_+1) {
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
Q[0][j][i] = Q[0][j][i] + (G[0][ty][tx] - G[0][ty+1][tx]) * dt_ / dy_;
Q[1][j][i] = Q[1][j][i] + (G[1][ty][tx] - G[1][ty+1][tx]) * dt_ / dy_;
Q[2][j][i] = Q[2][j][i] + (G[2][ty][tx] - G[2][ty+1][tx]) * dt_ / dy_;
}
}
/**
* Evolves the solution in time along the y axis (dimensional splitting)
*/
__device__ void evolveG2(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const int nx_, const int ny_,
const float dy_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 2; //Skip global ghost cells, i.e., +2
const int tj = get_global_id(1) + 2;
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
Q[0][j][i] = Q[0][j][i] + (G[0][ty][tx] - G[0][ty+1][tx]) * dt_ / dy_;
Q[1][j][i] = Q[1][j][i] + (G[1][ty][tx] - G[1][ty+1][tx]) * dt_ / dy_;
Q[2][j][i] = Q[2][j][i] + (G[2][ty][tx] - G[2][ty+1][tx]) * dt_ / dy_;
}
}
__device__ float3 F_func(const float3 Q, const float g) {
float3 F;
F.x = Q.y; //hu
F.y = Q.y*Q.y / Q.x + 0.5f*g*Q.x*Q.x; //hu*hu/h + 0.5f*g*h*h;
F.z = Q.y*Q.z / Q.x; //hu*hv/h;
return F;
}