Refactoring

This commit is contained in:
André R. Brodtkorb 2018-11-08 22:05:14 +01:00
parent ae668a40d3
commit fd337e7d53
7 changed files with 305 additions and 146 deletions

View File

@ -60,7 +60,7 @@ class Autotuner:
return
# Set arguments to send to the simulators during construction
context = Common.CudaContext(autotuning=False)
context = CudaContext.CudaContext(autotuning=False)
g = 9.81
h0, hu0, hv0, dx, dy, dt = Autotuner.gen_test_data(nx=self.nx, ny=self.ny, g=g)
arguments = {

View File

@ -186,7 +186,7 @@ Class that holds 2D data
"""
class CudaArray2D:
"""
Uploads initial data to the CL device
Uploads initial data to the CUDA device
"""
def __init__(self, stream, nx, ny, x_halo, y_halo, cpu_data=None, dtype=np.float32):
self.logger = logging.getLogger(__name__)
@ -217,10 +217,8 @@ class CudaArray2D:
copy.set_dst_device(self.data.gpudata)
#Set offsets of upload in destination
x_offset = (nx_halo - cpu_data.shape[1]) // 2
y_offset = (ny_halo - cpu_data.shape[0]) // 2
copy.dst_x_in_bytes = x_offset*self.data.strides[1]
copy.dst_y = y_offset
copy.dst_x_in_bytes = x_halo*self.data.strides[1]
copy.dst_y = y_halo
#Set destination pitch
copy.dst_pitch = self.data.strides[0]

View File

@ -78,8 +78,8 @@ class CudaContext(object):
self.logger.info("Created context handle <%s>", str(self.cuda_context.handle))
#Create cache dir for cubin files
self.cache_path = os.path.join(self.module_path, "cuda_cache")
if (self.use_cache):
self.cache_path = os.path.join(self.module_path, "cuda_cache")
if not os.path.isdir(self.cache_path):
os.mkdir(self.cache_path)
self.logger.info("Using CUDA cache dir %s", self.cache_path)

View File

@ -21,6 +21,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
@ -34,7 +35,7 @@ import numpy as np
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class EE2D_KP07_dimsplit (Simulator.BaseSimulator):
class EE2D_KP07_dimsplit (BaseSimulator):
"""
Initialization routine
@ -47,6 +48,7 @@ class EE2D_KP07_dimsplit (Simulator.BaseSimulator):
dx: Grid cell spacing along x-axis
dy: Grid cell spacing along y-axis
dt: Size of each timestep
g: Gravitational constant
gamma: Gas constant
p: pressure
"""
@ -55,8 +57,11 @@ class EE2D_KP07_dimsplit (Simulator.BaseSimulator):
rho, rho_u, rho_v, E, \
nx, ny, \
dx, dy, dt, \
g, \
gamma, \
theta=1.3, \
order=2, \
boundaryConditions=BoundaryCondition(), \
block_width=16, block_height=8):
# Call super constructor
@ -64,12 +69,15 @@ class EE2D_KP07_dimsplit (Simulator.BaseSimulator):
nx, ny, \
dx, dy, dt, \
block_width, block_height)
self.g = np.float32(g)
self.gamma = np.float32(gamma)
self.theta = np.float32(theta)
self.theta = np.float32(theta)
self.order = np.int32(order)
self.boundaryConditions = boundaryConditions.asCodedInt()
#Get kernels
self.kernel = context.get_prepared_kernel("cuda/EE2D_KP07_dimsplit.cu", "KP07DimsplitKernel", \
"iifffffiPiPiPiPiPiPiPiPi", \
"iiffffffiiPiPiPiPiPiPiPiPi", \
defines={
'BLOCK_WIDTH': self.block_size[0],
'BLOCK_HEIGHT': self.block_size[1]
@ -100,9 +108,11 @@ class EE2D_KP07_dimsplit (Simulator.BaseSimulator):
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream, \
self.nx, self.ny, \
self.dx, self.dy, dt, \
self.g, \
self.gamma, \
self.theta, \
np.int32(0), \
Simulator.stepOrderToCodedInt(step=0, order=self.order), \
self.boundaryConditions, \
self.u0[0].data.gpudata, self.u0[0].data.strides[0], \
self.u0[1].data.gpudata, self.u0[1].data.strides[0], \
self.u0[2].data.gpudata, self.u0[2].data.strides[0], \
@ -119,9 +129,11 @@ class EE2D_KP07_dimsplit (Simulator.BaseSimulator):
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream, \
self.nx, self.ny, \
self.dx, self.dy, dt, \
self.g, \
self.gamma, \
self.theta, \
np.int32(1), \
Simulator.stepOrderToCodedInt(step=0, order=self.order), \
self.boundaryConditions, \
self.u0[0].data.gpudata, self.u0[0].data.strides[0], \
self.u0[1].data.gpudata, self.u0[1].data.strides[0], \
self.u0[2].data.gpudata, self.u0[2].data.strides[0], \
@ -139,4 +151,5 @@ class EE2D_KP07_dimsplit (Simulator.BaseSimulator):
def check(self):
self.u0.check()
self.u1.check()
self.u1.check()
pass

View File

@ -23,6 +23,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#Import packages we need
import numpy as np
import logging
from enum import IntEnum
import pycuda.compiler as cuda_compiler
import pycuda.gpuarray
@ -31,25 +32,81 @@ import pycuda.driver as cuda
from GPUSimulators import Common
class BaseSimulator:
class BoundaryCondition(object):
"""
Initialization routine
context: GPU context to use
kernel_wrapper: wrapper function of GPU kernel
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
Class for holding boundary conditions for global boundaries
"""
class Type(IntEnum):
"""
Enum that describes the different types of boundary conditions
WARNING: MUST MATCH THAT OF common.h IN CUDA
"""
Dirichlet = 0,
Neumann = 1,
Periodic = 2,
Reflective = 3
def __init__(self, types={ \
'north': Type.Reflective, \
'south': Type.Reflective, \
'east': Type.Reflective, \
'west': Type.Reflective \
}):
"""
Constructor
"""
self.north = types['north']
self.south = types['south']
self.east = types['east']
self.west = types['west']
def asCodedInt(self):
"""
Helper function which packs four boundary conditions into one integer
"""
bc = 0
bc = bc | (self.north & 0x000F) << 24
bc = bc | (self.south & 0x000F) << 16
bc = bc | (self.east & 0x000F) << 8
bc = bc | (self.west & 0x000F)
#for t in types:
# print("{0:s}, {1:d}, {1:032b}, {1:08b}".format(t, types[t]))
#print("bc: {0:032b}".format(bc))
return np.int32(bc)
class BaseSimulator(object):
def __init__(self, \
context, \
nx, ny, \
dx, dy, dt, \
block_width, block_height):
"""
Initialization routine
context: GPU context to use
kernel_wrapper: wrapper function of GPU kernel
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
"""
#Get logger
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
@ -88,17 +145,19 @@ class BaseSimulator:
def __str__(self):
return "{:s} [{:d}x{:d}]".format(self.__class__.__name__, self.nx, self.ny)
"""
Function which simulates forward in time using the default simulation type
"""
def simulate(self, t_end):
"""
Function which simulates forward in time using the default simulation type
"""
raise(exceptions.NotImplementedError("Needs to be implemented in subclass"))
"""
Function which simulates t_end seconds using forward Euler
Requires that the stepEuler functionality is implemented in the subclasses
"""
def simulateEuler(self, t_end):
"""
Function which simulates t_end seconds using forward Euler
Requires that the stepEuler functionality is implemented in the subclasses
"""
# Compute number of timesteps to perform
n = int(t_end / self.dt + 1)
@ -119,17 +178,21 @@ class BaseSimulator:
print_string = printer.getPrintString(i)
if (print_string):
self.logger.info("%s (Euler): %s", self, print_string)
self.check()
try:
self.check()
except AssertionError as e:
e.args += ("Step={:d}, time={:f}".format(self.simSteps(), self.simTime()))
raise
#self.logger.info("%s simulated %f seconds to %f with %d steps (Euler)", self, t_end, self.t, n)
return self.t, n
"""
Function which simulates t_end seconds using Runge-Kutta 2
Requires that the stepRK functionality is implemented in the subclasses
"""
def simulateRK(self, t_end, order):
def simulateRK(self, t_end, order):
"""
Function which simulates t_end seconds using Runge-Kutta 2
Requires that the stepRK functionality is implemented in the subclasses
"""
# Compute number of timesteps to perform
n = int(t_end / self.dt + 1)
@ -150,15 +213,20 @@ class BaseSimulator:
print_string = printer.getPrintString(i)
if (print_string):
self.logger.info("%s (RK2): %s", self, print_string)
self.check()
try:
self.check()
except AssertionError as e:
e.args += ("Step={:d}, time={:f}".format(self.simSteps(), self.simTime()))
raise
return self.t, n
"""
Function which simulates t_end seconds using second order dimensional splitting (XYYX)
Requires that the stepDimsplitX and stepDimsplitY functionality is implemented in the subclasses
"""
def simulateDimsplit(self, t_end):
"""
Function which simulates t_end seconds using second order dimensional splitting (XYYX)
Requires that the stepDimsplitX and stepDimsplitY functionality is implemented in the subclasses
"""
# Compute number of timesteps to perform
n = int(t_end / (2.0*self.dt) + 1)
@ -180,24 +248,37 @@ class BaseSimulator:
print_string = printer.getPrintString(i)
if (print_string):
self.logger.info("%s (Dimsplit): %s", self, print_string)
self.check()
try:
self.check()
except AssertionError as e:
e.args += ("Step={:d}, time={:f}".format(self.simSteps(), self.simTime()))
raise
return self.t, 2*n
"""
Function which performs one single timestep of size dt using forward euler
"""
def stepEuler(self, dt):
"""
Function which performs one single timestep of size dt using forward euler
"""
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepRK(self, dt, substep):
"""
Function which performs one single timestep of size dt using Runge-Kutta
"""
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepDimsplitXY(self, dt):
"""
Function which performs one single timestep of size dt using dimensional splitting
"""
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepDimsplitYX(self, dt):
"""
Function which performs one single timestep of size dt using dimensional splitting
"""
raise(NotImplementedError("Needs to be implemented in subclass"))
def download(self):
@ -215,3 +296,25 @@ class BaseSimulator:
def simSteps(self):
return self.nt
def stepOrderToCodedInt(step, order):
"""
Helper function which packs the step and order into a single integer
"""
step_order = (step << 16) ^ (order & 0x00ff)
#print("Step: {0:032b}".format(step))
#print("Order: {0:032b}".format(order))
#print("Mix: {0:032b}".format(step_order))
return np.int32(step_order)

View File

@ -122,14 +122,17 @@ void computeFluxG(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07DimsplitKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float gamma_,
float theta_,
int step_,
int step_order_,
int boundary_conditions_,
//Input h^n
float* rho0_ptr_, int rho0_pitch_,
@ -142,7 +145,6 @@ __global__ void KP07DimsplitKernel(
float* rho_u1_ptr_, int rho_u1_pitch_,
float* rho_v1_ptr_, int rho_v1_pitch_,
float* E1_ptr_, int E1_pitch_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc = 2;
@ -153,8 +155,6 @@ __global__ void KP07DimsplitKernel(
__shared__ float Qx[4][h+4][w+4];
__shared__ float F[4][h+4][w+4];
//Read into shared memory
readBlock<w, h, gc>( rho0_ptr_, rho0_pitch_, Q[0], nx_, ny_);
readBlock<w, h, gc>(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_, ny_);
@ -167,13 +167,10 @@ __global__ void KP07DimsplitKernel(
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
__syncthreads();
const float g = 0.1f;
//Step 0 => evolve x first, then y
if (step_ == 0) {
if (getStep(step_order_) == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc, vars>(Q, Qx, theta_);
__syncthreads();
@ -184,17 +181,11 @@ __global__ void KP07DimsplitKernel(
evolveF<w, h, gc, vars>(Q, F, dx_, dt_);
__syncthreads();
//Set boundary conditions
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
@ -202,15 +193,14 @@ __global__ void KP07DimsplitKernel(
__syncthreads();
//Gravity source term
{
if (g_ > 0.0f) {
const int i = threadIdx.x + gc;
const int j = threadIdx.y + gc;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g*Q[0][j][i]*dt_;
Q[3][j][i] -= g*rho_v*dt_;
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
@ -223,13 +213,6 @@ __global__ void KP07DimsplitKernel(
evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
__syncthreads();
//Set boundary conditions
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc, vars>(Q, Qx, theta_);
@ -242,34 +225,36 @@ __global__ void KP07DimsplitKernel(
__syncthreads();
//Gravity source term
{
if (g_ > 0.0f) {
const int i = threadIdx.x + gc;
const int j = threadIdx.y + gc;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g*Q[0][j][i]*dt_;
Q[3][j][i] -= g*rho_v*dt_;
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
__syncthreads();
//This is the RK2-part
const int tx = threadIdx.x + gc;
const int ty = threadIdx.y + gc;
const float q1 = Q[0][ty][tx];
const float q2 = Q[1][ty][tx];
const float q3 = Q[2][ty][tx];
const float q4 = Q[3][ty][tx];
__syncthreads();
readBlock<w, h, gc>( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_);
readBlock<w, h, gc>(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_);
readBlock<w, h, gc>(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_);
readBlock<w, h, gc>( E1_ptr_, E1_pitch_, Q[3], nx_, ny_);
__syncthreads();
Q[0][ty][tx] = 0.5f*( Q[0][ty][tx] + q1 );
Q[1][ty][tx] = 0.5f*( Q[1][ty][tx] + q2 );
Q[2][ty][tx] = 0.5f*( Q[2][ty][tx] + q3 );
Q[3][ty][tx] = 0.5f*( Q[3][ty][tx] + q4 );
if (getOrder(step_order_) == 2) {
const int tx = threadIdx.x + gc;
const int ty = threadIdx.y + gc;
const float q1 = Q[0][ty][tx];
const float q2 = Q[1][ty][tx];
const float q3 = Q[2][ty][tx];
const float q4 = Q[3][ty][tx];
__syncthreads();
readBlock<w, h, gc>( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_);
readBlock<w, h, gc>(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_);
readBlock<w, h, gc>(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_);
readBlock<w, h, gc>( E1_ptr_, E1_pitch_, Q[3], nx_, ny_);
__syncthreads();
Q[0][ty][tx] = 0.5f*( Q[0][ty][tx] + q1 );
Q[1][ty][tx] = 0.5f*( Q[1][ty][tx] + q2 );
Q[2][ty][tx] = 0.5f*( Q[2][ty][tx] + q3 );
Q[3][ty][tx] = 0.5f*( Q[3][ty][tx] + q4 );
}
}

View File

@ -110,7 +110,7 @@ inline __device__ void readBlock(float* ptr_, int pitch_,
const int l = min(y + y_offset, ny_+2*ghost_cells-1);
*/
float* row = (float*) ((char*) ptr_ + pitch_*l);
float* row = (float*) ((char*) ptr_ + pitch_*l);
for (int i=threadIdx.x; i<block_width+2*ghost_cells; i+=block_width) {
const int k = min(bx + i, nx_+2*ghost_cells-1);
@ -167,90 +167,116 @@ inline __device__ void writeBlock(float* ptr_, int pitch_,
template<int block_width, int block_height, int ghost_cells, int scale_east_west=1, int scale_north_south=1>
__device__ void noFlowBoundary(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) {
bcEastReflective<block_width, block_height, ghost_cells, scale_east_west>(Q, nx_, ny_);
bcWestReflective<block_width, block_height, ghost_cells, scale_east_west>(Q, nx_, ny_);
__syncthreads();
bcNorthReflective<block_width, block_height, ghost_cells, scale_north_south>(Q, nx_, ny_);
bcSouthReflective<block_width, block_height, ghost_cells, scale_north_south>(Q, nx_, ny_);
__syncthreads();
}
// West boundary
template<int block_width, int block_height, int ghost_cells, int sign>
__device__ void bcWestReflective(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) {
for (int j=threadIdx.y; j<block_height+2*ghost_cells; j+= block_height) {
const int i = threadIdx.x + ghost_cells;
const int ti = blockDim.x*blockIdx.x + i;
const int tj = blockDim.y*blockIdx.y + j;
// West boundary
if (ti == ghost_cells) {
Q[j][i-1] = scale_east_west*Q[j][i];
Q[j][i-1] = sign*Q[j][i];
}
if (ghost_cells >= 2 && ti == ghost_cells + 1) {
Q[j][i-3] = scale_east_west*Q[j][i];
Q[j][i-3] = sign*Q[j][i];
}
if (ghost_cells >= 3 && ti == ghost_cells + 2) {
Q[j][i-5] = scale_east_west*Q[j][i];
Q[j][i-5] = sign*Q[j][i];
}
if (ghost_cells >= 4 && ti == ghost_cells + 3) {
Q[j][i-7] = scale_east_west*Q[j][i];
Q[j][i-7] = sign*Q[j][i];
}
if (ghost_cells >= 5 && ti == ghost_cells + 4) {
Q[j][i-9] = scale_east_west*Q[j][i];
}
// East boundary
if (ti == nx_ + ghost_cells - 1) {
Q[j][i+1] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 2 && ti == nx_ + ghost_cells - 2) {
Q[j][i+3] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 3) {
Q[j][i+5] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 4 && ti == nx_ + ghost_cells - 4) {
Q[j][i+7] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 5 && ti == nx_ + ghost_cells - 5) {
Q[j][i+9] = scale_east_west*Q[j][i];
Q[j][i-9] = sign*Q[j][i];
}
}
}
// East boundary
template<int block_width, int block_height, int ghost_cells, int sign>
__device__ void bcEastReflective(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) {
for (int j=threadIdx.y; j<block_height+2*ghost_cells; j+= block_height) {
const int i = threadIdx.x + ghost_cells;
const int ti = blockDim.x*blockIdx.x + i;
if (ti == nx_ + ghost_cells - 1) {
Q[j][i+1] = sign*Q[j][i];
}
if (ghost_cells >= 2 && ti == nx_ + ghost_cells - 2) {
Q[j][i+3] = sign*Q[j][i];
}
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 3) {
Q[j][i+5] = sign*Q[j][i];
}
if (ghost_cells >= 4 && ti == nx_ + ghost_cells - 4) {
Q[j][i+7] = sign*Q[j][i];
}
if (ghost_cells >= 5 && ti == nx_ + ghost_cells - 5) {
Q[j][i+9] = sign*Q[j][i];
}
}
}
// South boundary
template<int block_width, int block_height, int ghost_cells, int sign>
__device__ void bcSouthReflective(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) {
for (int i=threadIdx.x; i<block_width+2*ghost_cells; i+= block_width) {
const int j = threadIdx.y + ghost_cells;
const int ti = blockDim.x*blockIdx.x + i;
const int tj = blockDim.y*blockIdx.y + j;
// South boundary
if (tj == ghost_cells) {
Q[j-1][i] = scale_north_south*Q[j][i];
Q[j-1][i] = sign*Q[j][i];
}
if (ghost_cells >= 2 && tj == ghost_cells + 1) {
Q[j-3][i] = scale_north_south*Q[j][i];
Q[j-3][i] = sign*Q[j][i];
}
if (ghost_cells >= 3 && tj == ghost_cells + 2) {
Q[j-5][i] = scale_north_south*Q[j][i];
Q[j-5][i] = sign*Q[j][i];
}
if (ghost_cells >= 4 && tj == ghost_cells + 3) {
Q[j-7][i] = scale_north_south*Q[j][i];
Q[j-7][i] = sign*Q[j][i];
}
if (ghost_cells >= 5 && tj == ghost_cells + 4) {
Q[j-9][i] = scale_north_south*Q[j][i];
Q[j-9][i] = sign*Q[j][i];
}
}
}
// North boundary
// North boundary
template<int block_width, int block_height, int ghost_cells, int sign>
__device__ void bcNorthReflective(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) {
for (int i=threadIdx.x; i<block_width+2*ghost_cells; i+= block_width) {
const int j = threadIdx.y + ghost_cells;
const int tj = blockDim.y*blockIdx.y + j;
if (tj == ny_ + ghost_cells - 1) {
Q[j+1][i] = scale_north_south*Q[j][i];
Q[j+1][i] = sign*Q[j][i];
}
if (ghost_cells >= 2 && tj == ny_ + ghost_cells - 2) {
Q[j+3][i] = scale_north_south*Q[j][i];
Q[j+3][i] = sign*Q[j][i];
}
if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 3) {
Q[j+5][i] = scale_north_south*Q[j][i];
Q[j+5][i] = sign*Q[j][i];
}
if (ghost_cells >= 4 && tj == ny_ + ghost_cells - 4) {
Q[j+7][i] = scale_north_south*Q[j][i];
Q[j+7][i] = sign*Q[j][i];
}
if (ghost_cells >= 5 && tj == ny_ + ghost_cells - 5) {
Q[j+9][i] = scale_north_south*Q[j][i];
Q[j+9][i] = sign*Q[j][i];
}
}
}
@ -282,7 +308,7 @@ __device__ void evolveF(float Q[vars][block_height+2*ghost_cells][block_width+2*
const float dx_, const float dt_) {
for (int var=0; var < vars; ++var) {
for (int j=threadIdx.y; j<block_height+2*ghost_cells; j+=block_height) {
for (int i=threadIdx.x+1; i<block_width+2*ghost_cells; i+=block_width) {
for (int i=threadIdx.x+ghost_cells; i<block_width+ghost_cells; i+=block_width) {
Q[var][j][i] = Q[var][j][i] + (F[var][j][i-1] - F[var][j][i]) * dt_ / dx_;
}
}
@ -302,7 +328,7 @@ __device__ void evolveG(float Q[vars][block_height+2*ghost_cells][block_width+2*
float G[vars][block_height+2*ghost_cells][block_width+2*ghost_cells],
const float dy_, const float dt_) {
for (int var=0; var < vars; ++var) {
for (int j=threadIdx.y+1; j<block_height+2*ghost_cells; j+=block_height) {
for (int j=threadIdx.y+ghost_cells; j<block_height+ghost_cells; j+=block_height) {
for (int i=threadIdx.x; i<block_width+2*ghost_cells; i+=block_width) {
Q[var][j][i] = Q[var][j][i] + (G[var][j-1][i] - G[var][j][i]) * dt_ / dy_;
}
@ -329,11 +355,45 @@ __device__ void memset(float Q[vars][shmem_height][shmem_width], float value) {
}
/**
* Returns the step stored in the leftmost 16 bits
* of the 32 bit step-order integer
*/
inline __device__ int getStep(int step_order_) {
return step_order_ >> 16;
}
/**
* Returns the order stored in the rightmost 16 bits
* of the 32 bit step-order integer
*/
inline __device__ int getOrder(int step_order_) {
return step_order_ & 0x0000FFFF;
}
enum BoundaryCondition {
Dirichlet = 0,
Neumann = 1,
Periodic = 2,
Reflective = 3
};
inline __device__ BoundaryCondition getBCNorth(int bc_) {
return static_cast<BoundaryCondition>(bc_ & 0x000F);
}
inline __device__ BoundaryCondition getBCSouth(int bc_) {
return static_cast<BoundaryCondition>((bc_ >> 8) & 0x000F);
}
inline __device__ BoundaryCondition getBCEast(int bc_) {
return static_cast<BoundaryCondition>((bc_ >> 16) & 0x000F);
}
inline __device__ BoundaryCondition getBCWest(int bc_) {
return static_cast<BoundaryCondition>(bc_ >> 24);
}