mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 14:34:13 +02:00
Ported FORCE to CUDA
This commit is contained in:
parent
bc086865de
commit
fcc1d0db1c
File diff suppressed because one or more lines are too long
@ -22,7 +22,11 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#Import packages we need
|
||||
import numpy as np
|
||||
import pyopencl as cl #OpenCL in Python
|
||||
|
||||
import pycuda.compiler as cuda_compiler
|
||||
import pycuda.gpuarray
|
||||
import pycuda.driver as cuda
|
||||
|
||||
from SWESimulators import Common
|
||||
|
||||
|
||||
@ -53,24 +57,26 @@ class FORCE:
|
||||
g: Gravitational accelleration (9.81 m/s^2)
|
||||
"""
|
||||
def __init__(self, \
|
||||
cl_ctx, \
|
||||
h0, hu0, hv0, \
|
||||
nx, ny, \
|
||||
dx, dy, dt, \
|
||||
g, \
|
||||
block_width=16, block_height=16):
|
||||
self.cl_ctx = cl_ctx
|
||||
|
||||
#Create an OpenCL command queue
|
||||
self.cl_queue = cl.CommandQueue(self.cl_ctx)
|
||||
#Create a CUDA stream
|
||||
self.stream = cuda.Stream()
|
||||
|
||||
#Get kernels
|
||||
self.kernel = Common.get_kernel(self.cl_ctx, "FORCE_kernel.opencl", block_width, block_height)
|
||||
self.force_module = Common.get_kernel("FORCE_kernel.cu", block_width, block_height)
|
||||
self.force_kernel = self.force_module.get_function("FORCEKernel")
|
||||
self.force_kernel.prepare("iiffffPiPiPiPiPiPi")
|
||||
|
||||
#Create data by uploading to device
|
||||
ghost_cells_x = 1
|
||||
ghost_cells_y = 1
|
||||
self.cl_data = Common.SWEDataArkawaA(self.cl_ctx, nx, ny, ghost_cells_x, ghost_cells_y, h0, hu0, hv0)
|
||||
self.data = Common.SWEDataArakawaA(nx, ny, \
|
||||
ghost_cells_x, ghost_cells_y, \
|
||||
h0, hu0, hv0, \
|
||||
stream=self.stream)
|
||||
|
||||
#Save input parameters
|
||||
#Notice that we need to specify them in the correct dataformat for the
|
||||
@ -86,7 +92,7 @@ class FORCE:
|
||||
self.t = np.float32(0.0)
|
||||
|
||||
#Compute kernel launch parameters
|
||||
self.local_size = (block_width, block_height)
|
||||
self.local_size = (block_width, block_height, 1)
|
||||
self.global_size = ( \
|
||||
int(np.ceil(self.nx / float(self.local_size[0])) * self.local_size[0]), \
|
||||
int(np.ceil(self.ny / float(self.local_size[1])) * self.local_size[1]) \
|
||||
@ -109,20 +115,20 @@ class FORCE:
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
self.kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
|
||||
self.force_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \
|
||||
self.nx, self.ny, \
|
||||
self.dx, self.dy, local_dt, \
|
||||
self.g, \
|
||||
self.cl_data.h0.data, self.cl_data.h0.pitch, \
|
||||
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
|
||||
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
|
||||
self.cl_data.h1.data, self.cl_data.h1.pitch, \
|
||||
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
|
||||
self.cl_data.hv1.data, self.cl_data.hv1.pitch)
|
||||
self.data.h0.data.gpudata, self.data.h0.pitch, \
|
||||
self.data.hu0.data.gpudata, self.data.hu0.pitch, \
|
||||
self.data.hv0.data.gpudata, self.data.hv0.pitch, \
|
||||
self.data.h1.data.gpudata, self.data.h1.pitch, \
|
||||
self.data.hu1.data.gpudata, self.data.hu1.pitch, \
|
||||
self.data.hv1.data.gpudata, self.data.hv1.pitch)
|
||||
|
||||
self.t += local_dt
|
||||
|
||||
self.cl_data.swap()
|
||||
self.data.swap()
|
||||
|
||||
return self.t
|
||||
|
||||
@ -131,5 +137,5 @@ class FORCE:
|
||||
|
||||
|
||||
def download(self):
|
||||
return self.cl_data.download(self.cl_queue)
|
||||
return self.data.download(self.stream)
|
||||
|
||||
|
@ -19,14 +19,15 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.opencl"
|
||||
#include "common.cu"
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
void computeFluxF(__local float Q[3][block_height+2][block_width+2],
|
||||
__local float F[3][block_height+1][block_width+1],
|
||||
__device__
|
||||
void computeFluxF(float Q[3][block_height+2][block_width+2],
|
||||
float F[3][block_height+1][block_width+1],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
|
||||
//Index of thread within block
|
||||
@ -40,12 +41,12 @@ void computeFluxF(__local float Q[3][block_height+2][block_width+2],
|
||||
const int k = i;
|
||||
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = (float3)(Q[0][l][k+1],
|
||||
Q[1][l][k+1],
|
||||
Q[2][l][k+1]);
|
||||
const float3 Qm = (float3)(Q[0][l][k],
|
||||
Q[1][l][k],
|
||||
Q[2][l][k]);
|
||||
const float3 Qp = make_float3(Q[0][l][k+1],
|
||||
Q[1][l][k+1],
|
||||
Q[2][l][k+1]);
|
||||
const float3 Qm = make_float3(Q[0][l][k],
|
||||
Q[1][l][k],
|
||||
Q[2][l][k]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dx_, dt_);
|
||||
@ -54,15 +55,16 @@ void computeFluxF(__local float Q[3][block_height+2][block_width+2],
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
void computeFluxG(__local float Q[3][block_height+2][block_width+2],
|
||||
__local float G[3][block_height+1][block_width+1],
|
||||
__device__
|
||||
void computeFluxG(float Q[3][block_height+2][block_width+2],
|
||||
float G[3][block_height+1][block_width+1],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = get_local_id(0);
|
||||
@ -76,12 +78,12 @@ void computeFluxG(__local float Q[3][block_height+2][block_width+2],
|
||||
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = (float3)(Q[0][l+1][k],
|
||||
Q[2][l+1][k],
|
||||
Q[1][l+1][k]);
|
||||
const float3 Qm = (float3)(Q[0][l][k],
|
||||
Q[2][l][k],
|
||||
Q[1][l][k]);
|
||||
const float3 Qp = make_float3(Q[0][l+1][k],
|
||||
Q[2][l+1][k],
|
||||
Q[1][l+1][k]);
|
||||
const float3 Qm = make_float3(Q[0][l][k],
|
||||
Q[2][l][k],
|
||||
Q[1][l][k]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
@ -91,24 +93,24 @@ void computeFluxG(__local float Q[3][block_height+2][block_width+2],
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
__kernel void swe_2D(
|
||||
__global__ void FORCEKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
//Input h^n
|
||||
__global float* h0_ptr_, int h0_pitch_,
|
||||
__global float* hu0_ptr_, int hu0_pitch_,
|
||||
__global float* hv0_ptr_, int hv0_pitch_,
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
__global float* h1_ptr_, int h1_pitch_,
|
||||
__global float* hu1_ptr_, int hu1_pitch_,
|
||||
__global float* hv1_ptr_, int hv1_pitch_) {
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
//Index of thread within block
|
||||
const int tx = get_local_id(0);
|
||||
@ -122,8 +124,8 @@ __kernel void swe_2D(
|
||||
const int ti = get_global_id(0) + 1; //Skip global ghost cells, i.e., +1
|
||||
const int tj = get_global_id(1) + 1;
|
||||
|
||||
__local float Q[3][block_height+2][block_width+2];
|
||||
__local float F[3][block_height+1][block_width+1];
|
||||
__shared__ float Q[3][block_height+2][block_width+2];
|
||||
__shared__ float F[3][block_height+1][block_width+1];
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
@ -131,7 +133,7 @@ __kernel void swe_2D(
|
||||
hu0_ptr_, hu0_pitch_,
|
||||
hv0_ptr_, hv0_pitch_,
|
||||
Q, nx_, ny_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Save our input variables
|
||||
@ -142,23 +144,21 @@ __kernel void swe_2D(
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary1(Q, nx_, ny_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along x, and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
evolveF1(Q, F, nx_, ny_, dx_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary1(Q, nx_, ny_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along y, and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
evolveG1(Q, F, nx_, ny_, dy_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Write to main memory
|
||||
writeBlock1(h1_ptr_, h1_pitch_,
|
Loading…
x
Reference in New Issue
Block a user