mirror of
				https://github.com/smyalygames/FiniteVolumeGPU.git
				synced 2025-10-31 20:27:40 +01:00 
			
		
		
		
	refactor(mpi): make mpi a module
This commit is contained in:
		
							parent
							
								
									0f62900f05
								
							
						
					
					
						commit
						ebaad2eaa6
					
				| @ -1,486 +0,0 @@ | ||||
| # -*- coding: utf-8 -*- | ||||
| 
 | ||||
| """ | ||||
| This python module implements MPI simulator class | ||||
| 
 | ||||
| Copyright (C) 2018 SINTEF Digital | ||||
| 
 | ||||
| This program is free software: you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation, either version 3 of the License, or | ||||
| (at your option) any later version. | ||||
| 
 | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
| 
 | ||||
| You should have received a copy of the GNU General Public License | ||||
| along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||||
| """ | ||||
| 
 | ||||
| import logging | ||||
| import numpy as np | ||||
| from mpi4py import MPI | ||||
| import time | ||||
| 
 | ||||
| import pycuda.driver as cuda | ||||
| 
 | ||||
| from GPUSimulators.simulator import BaseSimulator, BoundaryCondition | ||||
| #import nvtx | ||||
| 
 | ||||
| from GPUSimulators.simulator import boundary | ||||
| 
 | ||||
| 
 | ||||
| def get_grid(num_nodes, num_dims): | ||||
|     if not isinstance(num_nodes, int): | ||||
|         raise TypeError("Parameter `num_nodes` is not a an integer.") | ||||
|     if not isinstance(num_dims, int): | ||||
|         raise TypeError("Parameter `num_dims` is not a an integer.") | ||||
| 
 | ||||
|     # Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors | ||||
|     # Original code by https://stackoverflow.com/users/3928385/ishamael | ||||
|     # Factorizes a number into n roughly equal factors | ||||
| 
 | ||||
|     #Dictionary to remember already computed permutations | ||||
|     memo = {} | ||||
|     def dp(n, left): # returns tuple (cost, [factors]) | ||||
|         """ | ||||
|         Recursively searches through all factorizations | ||||
|         """ | ||||
| 
 | ||||
|         #Already tried: return an existing result | ||||
|         if (n, left) in memo: | ||||
|             return memo[(n, left)] | ||||
| 
 | ||||
|         #Spent all factors: return number itself | ||||
|         if left == 1: | ||||
|             return (n, [n]) | ||||
| 
 | ||||
|         #Find a new factor | ||||
|         i = 2 | ||||
|         best = n | ||||
|         best_tuple = [n] | ||||
|         while i * i < n: | ||||
|             #If a factor found | ||||
|             if n % i == 0: | ||||
|                 #Factorize remainder | ||||
|                 rem = dp(n // i, left - 1) | ||||
| 
 | ||||
|                 #If new permutation better, save it | ||||
|                 if rem[0] + i < best: | ||||
|                     best = rem[0] + i | ||||
|                     best_tuple = [i] + rem[1] | ||||
|             i += 1 | ||||
| 
 | ||||
|         #Store calculation | ||||
|         memo[(n, left)] = (best, best_tuple) | ||||
|         return memo[(n, left)] | ||||
| 
 | ||||
| 
 | ||||
|     grid = dp(num_nodes, num_dims)[1] | ||||
| 
 | ||||
|     if len(grid) < num_dims: | ||||
|         #Split problematic 4 | ||||
|         if 4 in grid: | ||||
|             grid.remove(4) | ||||
|             grid.append(2) | ||||
|             grid.append(2) | ||||
| 
 | ||||
|         #Pad with ones to guarantee num_dims | ||||
|         grid = grid + [1]*(num_dims - len(grid)) | ||||
| 
 | ||||
|     #Sort in descending order | ||||
|     grid = np.sort(grid) | ||||
|     grid = grid[::-1] | ||||
| 
 | ||||
|     # XXX: We only use vertical (north-south) partitioning for now | ||||
|     grid[0] = 1 | ||||
|     grid[1] = num_nodes | ||||
| 
 | ||||
|     return grid | ||||
| 
 | ||||
| 
 | ||||
| class MPIGrid(object): | ||||
|     """ | ||||
|     Class which represents an MPI grid of nodes. Facilitates easy communication between | ||||
|     neighboring nodes | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, comm, ndims=2): | ||||
|         self.logger =  logging.getLogger(__name__) | ||||
| 
 | ||||
|         if ndims != 2: | ||||
|             raise ValueError("Unsupported number of dimensions. Must be two at the moment") | ||||
|         if comm.size < 1: | ||||
|             raise ValueError("Must have at least one node") | ||||
|          | ||||
|         self.grid = get_grid(comm.size, ndims) | ||||
|         self.comm = comm | ||||
|          | ||||
|         self.logger.debug(f"Created MPI grid: {self.grid}. Rank {self.comm.rank} has coordinate {self.get_coordinate()}") | ||||
| 
 | ||||
|     def get_coordinate(self, rank=None): | ||||
|         if rank is None: | ||||
|             rank = self.comm.rank | ||||
|         i = (rank  % self.grid[0]) | ||||
|         j = (rank // self.grid[0]) | ||||
|         return i, j | ||||
| 
 | ||||
|     def get_rank(self, i, j): | ||||
|         return j*self.grid[0] + i | ||||
| 
 | ||||
|     def get_east(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         i = (i+1) % self.grid[0] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def get_west(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         i = (i+self.grid[0]-1) % self.grid[0] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def get_north(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         j = (j+1) % self.grid[1] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def get_south(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         j = (j+self.grid[1]-1) % self.grid[1] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def gather(self, data, root=0): | ||||
|         out_data = None | ||||
|         if self.comm.rank == root: | ||||
|             out_data = np.empty([self.comm.size] + list(data.shape), dtype=data.dtype) | ||||
|         self.comm.Gather(data, out_data, root) | ||||
|         return out_data | ||||
|          | ||||
|     def get_local_rank(self): | ||||
|         """ | ||||
|         Returns the local rank on this node for this MPI process | ||||
|         """ | ||||
|          | ||||
|         # This function has been adapted from  | ||||
|         # https://github.com/SheffieldML/PyDeepGP/blob/master/deepgp/util/parallel.py | ||||
|         # by Zhenwen Dai released under BSD 3-Clause "New" or "Revised" License: | ||||
|         #  | ||||
|         # Copyright (c) 2016, Zhenwen Dai | ||||
|         # All rights reserved. | ||||
|         #  | ||||
|         # Redistribution and use in source and binary forms, with or without | ||||
|         # modification, are permitted provided that the following conditions are met: | ||||
|         #  | ||||
|         # * Redistributions of source code must retain the above copyright notice, this | ||||
|         #   list of conditions and the following disclaimer. | ||||
|         #  | ||||
|         # * Redistributions in binary form must reproduce the above copyright notice, | ||||
|         #   this list of conditions and the following disclaimer in the documentation | ||||
|         #   and/or other materials provided with the distribution. | ||||
|         #  | ||||
|         # * Neither the name of DGP nor the names of its | ||||
|         #   contributors may be used to endorse or promote products derived from | ||||
|         #   this software without specific prior written permission. | ||||
|         #  | ||||
|         # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||||
|         # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||||
|         # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||||
|         # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||||
|         # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||||
|         # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||||
|         # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||||
|         # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||||
|         # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||||
|         # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||||
|          | ||||
|         #Get this ranks unique (physical) node name | ||||
|         node_name = MPI.Get_processor_name() | ||||
|          | ||||
|         #Gather the list of all node names on all nodes | ||||
|         node_names = self.comm.allgather(node_name) | ||||
|                  | ||||
|         #Loop over all node names up until our rank | ||||
|         #and count how many duplicates of our nodename we find | ||||
|         local_rank = len([0 for name in node_names[:self.comm.rank] if name==node_name]) | ||||
|          | ||||
|         return local_rank | ||||
| 
 | ||||
| 
 | ||||
| class MPISimulator(BaseSimulator): | ||||
|     """ | ||||
|     Class which handles communication between simulators on different MPI nodes | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, sim, grid):         | ||||
|         self.profiling_data_mpi = {'start': {}, 'end': {}} | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_step"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_step"] = 0 | ||||
|         self.profiling_data_mpi["n_time_steps"] = 0 | ||||
|         self.logger =  logging.getLogger(__name__) | ||||
|          | ||||
|         autotuner = sim.context.autotuner | ||||
|         sim.context.autotuner = None | ||||
|         boundary_conditions = sim.get_boundary_conditions() | ||||
|         super().__init__(sim.context,  | ||||
|             sim.nx, sim.ny,  | ||||
|             sim.dx, sim.dy,  | ||||
|             boundary_conditions, | ||||
|             sim.cfl_scale, | ||||
|             sim.num_substeps,   | ||||
|             sim.block_size[0], sim.block_size[1]) | ||||
|         sim.context.autotuner = autotuner | ||||
|          | ||||
|         self.sim = sim | ||||
|         self.grid = grid | ||||
|          | ||||
|         #Get neighbor node ids | ||||
|         self.east = grid.get_east() | ||||
|         self.west = grid.get_west() | ||||
|         self.north = grid.get_north() | ||||
|         self.south = grid.get_south() | ||||
|          | ||||
|         #Get coordinate of this node | ||||
|         #and handle global boundary conditions | ||||
|         new_boundary_conditions = BoundaryCondition({ | ||||
|             'north': BoundaryCondition.Type.Dirichlet, | ||||
|             'south': BoundaryCondition.Type.Dirichlet, | ||||
|             'east': BoundaryCondition.Type.Dirichlet, | ||||
|             'west': BoundaryCondition.Type.Dirichlet | ||||
|         }) | ||||
|         gi, gj = grid.get_coordinate() | ||||
|         #print("gi: " + str(gi) + ", gj: " + str(gj)) | ||||
|         if gi == 0 and boundary_conditions.west != BoundaryCondition.Type.Periodic: | ||||
|             self.west = None | ||||
|             new_boundary_conditions.west = boundary_conditions.west | ||||
|         if gj == 0 and boundary_conditions.south != BoundaryCondition.Type.Periodic: | ||||
|             self.south = None | ||||
|             new_boundary_conditions.south = boundary_conditions.south | ||||
|         if gi == grid.grid[0]-1 and boundary_conditions.east != BoundaryCondition.Type.Periodic: | ||||
|             self.east = None | ||||
|             new_boundary_conditions.east = boundary_conditions.east | ||||
|         if gj == grid.grid[1]-1 and boundary_conditions.north != BoundaryCondition.Type.Periodic: | ||||
|             self.north = None | ||||
|             new_boundary_conditions.north = boundary_conditions.north | ||||
|         sim.set_boundary_conditions(new_boundary_conditions) | ||||
|                  | ||||
|         #Get number of variables | ||||
|         self.nvars = len(self.get_output().gpu_variables) | ||||
|          | ||||
|         #Shorthands for computing extents and sizes | ||||
|         gc_x = int(self.sim.get_output()[0].x_halo) | ||||
|         gc_y = int(self.sim.get_output()[0].y_halo) | ||||
|         nx = int(self.sim.nx) | ||||
|         ny = int(self.sim.ny) | ||||
|          | ||||
|         #Set regions for ghost cells to read from | ||||
|         #These have the format [x0, y0, width, height] | ||||
|         self.read_e = np.array([  nx,    0, gc_x, ny + 2*gc_y]) | ||||
|         self.read_w = np.array([gc_x,    0, gc_x, ny + 2*gc_y]) | ||||
|         self.read_n = np.array([gc_x,   ny,   nx,        gc_y]) | ||||
|         self.read_s = np.array([gc_x, gc_y,   nx,        gc_y]) | ||||
|          | ||||
|         #Set regions for ghost cells to write to | ||||
|         self.write_e = self.read_e + np.array([gc_x, 0, 0, 0]) | ||||
|         self.write_w = self.read_w - np.array([gc_x, 0, 0, 0]) | ||||
|         self.write_n = self.read_n + np.array([0, gc_y, 0, 0]) | ||||
|         self.write_s = self.read_s - np.array([0, gc_y, 0, 0]) | ||||
|          | ||||
|         #Allocate data for receiving | ||||
|         #Note that east and west also transfer ghost cells | ||||
|         #whilst north/south only transfer internal cells | ||||
|         #Reuses the width/height defined in the read-extets above | ||||
|         self.in_e = cuda.pagelocked_empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), dtype=np.float32) #np.empty((self.nvars, self.read_e[3], self.read_e[2]), dtype=np.float32) | ||||
|         self.in_w = cuda.pagelocked_empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), dtype=np.float32) #np.empty((self.nvars, self.read_w[3], self.read_w[2]), dtype=np.float32) | ||||
|         self.in_n = cuda.pagelocked_empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), dtype=np.float32) #np.empty((self.nvars, self.read_n[3], self.read_n[2]), dtype=np.float32) | ||||
|         self.in_s = cuda.pagelocked_empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), dtype=np.float32) #np.empty((self.nvars, self.read_s[3], self.read_s[2]), dtype=np.float32) | ||||
| 
 | ||||
|         #Allocate data for sending | ||||
|         self.out_e = cuda.pagelocked_empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), dtype=np.float32) #np.empty_like(self.in_e) | ||||
|         self.out_w = cuda.pagelocked_empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), dtype=np.float32) #np.empty_like(self.in_w) | ||||
|         self.out_n = cuda.pagelocked_empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), dtype=np.float32) #np.empty_like(self.in_n) | ||||
|         self.out_s = cuda.pagelocked_empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), dtype=np.float32) #np.empty_like(self.in_s) | ||||
|          | ||||
|         self.logger.debug(f"Simulator rank {self.grid.comm.rank} initialized on {MPI.Get_processor_name()}") | ||||
| 
 | ||||
|         self.full_exchange() | ||||
|         sim.context.synchronize() | ||||
|      | ||||
|     def substep(self, dt, step_number): | ||||
|          | ||||
|         #nvtx.mark("substep start", color="yellow") | ||||
| 
 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_step"] += time.time() | ||||
|          | ||||
|         #nvtx.mark("substep external", color="blue") | ||||
|         self.sim.substep(dt, step_number, external=True, internal=False) # only "internal ghost cells" | ||||
|          | ||||
|         #nvtx.mark("substep internal", color="red") | ||||
|         self.sim.substep(dt, step_number, internal=True, external=False) # "internal ghost cells" excluded | ||||
| 
 | ||||
|         #nvtx.mark("substep full", color="blue") | ||||
|         #self.sim.substep(dt, step_number, external=True, internal=True) | ||||
| 
 | ||||
|         self.sim.swap_buffers() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_step"] += time.time() | ||||
|          | ||||
|         #nvtx.mark("exchange", color="blue") | ||||
|         self.full_exchange() | ||||
| 
 | ||||
|         #nvtx.mark("sync start", color="blue") | ||||
|         self.sim.stream.synchronize() | ||||
|         self.sim.internal_stream.synchronize() | ||||
|         #nvtx.mark("sync end", color="blue") | ||||
|          | ||||
|         self.profiling_data_mpi["n_time_steps"] += 1 | ||||
| 
 | ||||
|     def get_output(self): | ||||
|         return self.sim.get_output() | ||||
|          | ||||
|     def synchronize(self): | ||||
|         self.sim.synchronize() | ||||
|          | ||||
|     def check(self): | ||||
|         return self.sim.check() | ||||
|          | ||||
|     def compute_dt(self): | ||||
|         local_dt = np.array([np.float32(self.sim.compute_dt())]) | ||||
|         global_dt = np.empty(1, dtype=np.float32) | ||||
|         self.grid.comm.Allreduce(local_dt, global_dt, op=MPI.MIN) | ||||
|         self.logger.debug(f"Local dt: {local_dt[0]}, global dt: {global_dt[0]}") | ||||
|         return global_dt[0] | ||||
|          | ||||
|     def get_extent(self): | ||||
|         """ | ||||
|         Function which returns the extent of node with rank  | ||||
|         in the grid | ||||
|         """ | ||||
| 
 | ||||
|         width = self.sim.nx*self.sim.dx | ||||
|         height = self.sim.ny*self.sim.dy | ||||
|         i, j = self.grid.get_coordinate() | ||||
|         x0 = i * width | ||||
|         y0 = j * height  | ||||
|         x1 = x0 + width | ||||
|         y1 = y0 + height | ||||
|         return [x0, x1, y0, y1] | ||||
| 
 | ||||
|     def full_exchange(self): | ||||
|         #### | ||||
|         # First transfer internal cells north-south | ||||
|         #### | ||||
|          | ||||
|         #Download from the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time() | ||||
|              | ||||
|         if self.north is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_n[k,:,:], asynch=True, extent=self.read_n) | ||||
|         if self.south is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_s[k,:,:], asynch=True, extent=self.read_s) | ||||
|         self.sim.stream.synchronize() | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time() | ||||
|          | ||||
|         #Send/receive to north/south neighbors | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         comm_send = [] | ||||
|         comm_recv = [] | ||||
|         if self.north is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_n, dest=self.north, tag=4*self.nt + 0)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_n, source=self.north, tag=4*self.nt + 1)] | ||||
|         if self.south is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_s, dest=self.south, tag=4*self.nt + 1)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_s, source=self.south, tag=4*self.nt + 0)] | ||||
|          | ||||
|         #Wait for incoming transfers to complete | ||||
|         for comm in comm_recv: | ||||
|             comm.wait() | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         #Upload to the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
|          | ||||
|         if self.north is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_n[k,:,:], extent=self.write_n) | ||||
|         if self.south is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_s[k,:,:], extent=self.write_s) | ||||
|                  | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
|          | ||||
|         #Wait for sending to complete | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         for comm in comm_send: | ||||
|             comm.wait() | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         #### | ||||
|         # Then transfer east-west including ghost cells that have been filled in by north-south transfer above | ||||
|         #### | ||||
|          | ||||
|         #Download from the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time() | ||||
|          | ||||
|         if self.east is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_e[k,:,:], asynch=True, extent=self.read_e) | ||||
|         if self.west is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_w[k,:,:], asynch=True, extent=self.read_w) | ||||
|         self.sim.stream.synchronize() | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time() | ||||
|          | ||||
|         #Send/receive to east/west neighbors | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         comm_send = [] | ||||
|         comm_recv = [] | ||||
|         if self.east is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_e, dest=self.east, tag=4*self.nt + 2)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_e, source=self.east, tag=4*self.nt + 3)] | ||||
|         if self.west is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_w, dest=self.west, tag=4*self.nt + 3)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_w, source=self.west, tag=4*self.nt + 2)] | ||||
|          | ||||
|         #Wait for incoming transfers to complete | ||||
|         for comm in comm_recv: | ||||
|             comm.wait() | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         #Upload to the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
|          | ||||
|         if self.east is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_e[k,:,:], extent=self.write_e) | ||||
|         if self.west is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_w[k,:,:], extent=self.write_w) | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
|          | ||||
|         #Wait for sending to complete | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         for comm in comm_send: | ||||
|             comm.wait() | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
							
								
								
									
										2
									
								
								GPUSimulators/mpi/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								GPUSimulators/mpi/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,2 @@ | ||||
| from .grid import MPIGrid | ||||
| from .simulator import MPISimulator | ||||
							
								
								
									
										177
									
								
								GPUSimulators/mpi/grid.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										177
									
								
								GPUSimulators/mpi/grid.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,177 @@ | ||||
| from mpi4py import MPI | ||||
| 
 | ||||
| 
 | ||||
| def get_grid(num_nodes, num_dims): | ||||
|     if not isinstance(num_nodes, int): | ||||
|         raise TypeError("Parameter `num_nodes` is not a an integer.") | ||||
|     if not isinstance(num_dims, int): | ||||
|         raise TypeError("Parameter `num_dims` is not a an integer.") | ||||
| 
 | ||||
|     # Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors | ||||
|     # Original code by https://stackoverflow.com/users/3928385/ishamael | ||||
|     # Factorizes a number into n roughly equal factors | ||||
| 
 | ||||
|     # Dictionary to remember already computed permutations | ||||
|     memo = {} | ||||
| 
 | ||||
|     def dp(n, left):  # returns tuple (cost, [factors]) | ||||
|         """ | ||||
|         Recursively searches through all factorizations | ||||
|         """ | ||||
| 
 | ||||
|         # Already tried: return an existing result | ||||
|         if (n, left) in memo: | ||||
|             return memo[(n, left)] | ||||
| 
 | ||||
|         # Spent all factors: return number itself | ||||
|         if left == 1: | ||||
|             return (n, [n]) | ||||
| 
 | ||||
|         # Find a new factor | ||||
|         i = 2 | ||||
|         best = n | ||||
|         best_tuple = [n] | ||||
|         while i * i < n: | ||||
|             # If a factor found | ||||
|             if n % i == 0: | ||||
|                 # Factorize remainder | ||||
|                 rem = dp(n // i, left - 1) | ||||
| 
 | ||||
|                 # If new permutation better, save it | ||||
|                 if rem[0] + i < best: | ||||
|                     best = rem[0] + i | ||||
|                     best_tuple = [i] + rem[1] | ||||
|             i += 1 | ||||
| 
 | ||||
|         # Store calculation | ||||
|         memo[(n, left)] = (best, best_tuple) | ||||
|         return memo[(n, left)] | ||||
| 
 | ||||
|     grid = dp(num_nodes, num_dims)[1] | ||||
| 
 | ||||
|     if len(grid) < num_dims: | ||||
|         # Split problematic 4 | ||||
|         if 4 in grid: | ||||
|             grid.remove(4) | ||||
|             grid.append(2) | ||||
|             grid.append(2) | ||||
| 
 | ||||
|         # Pad with ones to guarantee num_dims | ||||
|         grid = grid + [1] * (num_dims - len(grid)) | ||||
| 
 | ||||
|     # Sort in descending order | ||||
|     grid = np.sort(grid) | ||||
|     grid = grid[::-1] | ||||
| 
 | ||||
|     # XXX: We only use vertical (north-south) partitioning for now | ||||
|     grid[0] = 1 | ||||
|     grid[1] = num_nodes | ||||
| 
 | ||||
|     return grid | ||||
| 
 | ||||
| 
 | ||||
| class MPIGrid(object): | ||||
|     """ | ||||
|     Class which represents an MPI grid of nodes. Facilitates easy communication between | ||||
|     neighboring nodes | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, comm, ndims=2): | ||||
|         self.logger = logging.getLogger(__name__) | ||||
| 
 | ||||
|         if ndims != 2: | ||||
|             raise ValueError("Unsupported number of dimensions. Must be two at the moment") | ||||
|         if comm.size < 1: | ||||
|             raise ValueError("Must have at least one node") | ||||
| 
 | ||||
|         self.grid = get_grid(comm.size, ndims) | ||||
|         self.comm = comm | ||||
| 
 | ||||
|         self.logger.debug( | ||||
|             f"Created MPI grid: {self.grid}. Rank {self.comm.rank} has coordinate {self.get_coordinate()}") | ||||
| 
 | ||||
|     def get_coordinate(self, rank=None): | ||||
|         if rank is None: | ||||
|             rank = self.comm.rank | ||||
|         i = (rank % self.grid[0]) | ||||
|         j = (rank // self.grid[0]) | ||||
|         return i, j | ||||
| 
 | ||||
|     def get_rank(self, i, j): | ||||
|         return j * self.grid[0] + i | ||||
| 
 | ||||
|     def get_east(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         i = (i + 1) % self.grid[0] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def get_west(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         i = (i + self.grid[0] - 1) % self.grid[0] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def get_north(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         j = (j + 1) % self.grid[1] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def get_south(self): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         j = (j + self.grid[1] - 1) % self.grid[1] | ||||
|         return self.get_rank(i, j) | ||||
| 
 | ||||
|     def gather(self, data, root=0): | ||||
|         out_data = None | ||||
|         if self.comm.rank == root: | ||||
|             out_data = np.empty([self.comm.size] + list(data.shape), dtype=data.dtype) | ||||
|         self.comm.Gather(data, out_data, root) | ||||
|         return out_data | ||||
| 
 | ||||
|     def get_local_rank(self): | ||||
|         """ | ||||
|         Returns the local rank on this node for this MPI process | ||||
|         """ | ||||
| 
 | ||||
|         # This function has been adapted from | ||||
|         # https://github.com/SheffieldML/PyDeepGP/blob/master/deepgp/util/parallel.py | ||||
|         # by Zhenwen Dai released under BSD 3-Clause "New" or "Revised" License: | ||||
|         # | ||||
|         # Copyright (c) 2016, Zhenwen Dai | ||||
|         # All rights reserved. | ||||
|         # | ||||
|         # Redistribution and use in source and binary forms, with or without | ||||
|         # modification, are permitted provided that the following conditions are met: | ||||
|         # | ||||
|         # * Redistributions of source code must retain the above copyright notice, this | ||||
|         #   list of conditions and the following disclaimer. | ||||
|         # | ||||
|         # * Redistributions in binary form must reproduce the above copyright notice, | ||||
|         #   this list of conditions and the following disclaimer in the documentation | ||||
|         #   and/or other materials provided with the distribution. | ||||
|         # | ||||
|         # * Neither the name of DGP nor the names of its | ||||
|         #   contributors may be used to endorse or promote products derived from | ||||
|         #   this software without specific prior written permission. | ||||
|         # | ||||
|         # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||||
|         # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||||
|         # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||||
|         # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||||
|         # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||||
|         # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||||
|         # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||||
|         # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||||
|         # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||||
|         # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||||
| 
 | ||||
|         # Get this ranks unique (physical) node name | ||||
|         node_name = MPI.Get_processor_name() | ||||
| 
 | ||||
|         # Gather the list of all node names on all nodes | ||||
|         node_names = self.comm.allgather(node_name) | ||||
| 
 | ||||
|         # Loop over all node names up until our rank | ||||
|         # and count how many duplicates of our nodename we find | ||||
|         local_rank = len([0 for name in node_names[:self.comm.rank] if name == node_name]) | ||||
| 
 | ||||
|         return local_rank | ||||
							
								
								
									
										323
									
								
								GPUSimulators/mpi/simulator.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										323
									
								
								GPUSimulators/mpi/simulator.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,323 @@ | ||||
| # -*- coding: utf-8 -*- | ||||
| 
 | ||||
| """ | ||||
| This python module implements MPI simulator class | ||||
| 
 | ||||
| Copyright (C) 2018 SINTEF Digital | ||||
| 
 | ||||
| This program is free software: you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation, either version 3 of the License, or | ||||
| (at your option) any later version. | ||||
| 
 | ||||
| This program is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| GNU General Public License for more details. | ||||
| 
 | ||||
| You should have received a copy of the GNU General Public License | ||||
| along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||||
| """ | ||||
| 
 | ||||
| import logging | ||||
| import numpy as np | ||||
| from mpi4py import MPI | ||||
| import time | ||||
| 
 | ||||
| import pycuda.driver as cuda | ||||
| 
 | ||||
| from GPUSimulators.simulator import BaseSimulator, BoundaryCondition | ||||
| 
 | ||||
| 
 | ||||
| class MPISimulator(BaseSimulator): | ||||
|     """ | ||||
|     Class which handles communication between simulators on different MPI nodes | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, sim, grid): | ||||
|         self.profiling_data_mpi = {'start': {}, 'end': {}} | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_step"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_step"] = 0 | ||||
|         self.profiling_data_mpi["n_time_steps"] = 0 | ||||
|         self.logger = logging.getLogger(__name__) | ||||
| 
 | ||||
|         autotuner = sim.context.autotuner | ||||
|         sim.context.autotuner = None | ||||
|         boundary_conditions = sim.get_boundary_conditions() | ||||
|         super().__init__(sim.context, | ||||
|                          sim.nx, sim.ny, | ||||
|                          sim.dx, sim.dy, | ||||
|                          boundary_conditions, | ||||
|                          sim.cfl_scale, | ||||
|                          sim.num_substeps, | ||||
|                          sim.block_size[0], sim.block_size[1]) | ||||
|         sim.context.autotuner = autotuner | ||||
| 
 | ||||
|         self.sim = sim | ||||
|         self.grid = grid | ||||
| 
 | ||||
|         # Get neighbor node ids | ||||
|         self.east = grid.get_east() | ||||
|         self.west = grid.get_west() | ||||
|         self.north = grid.get_north() | ||||
|         self.south = grid.get_south() | ||||
| 
 | ||||
|         # Get coordinate of this node | ||||
|         # and handle global boundary conditions | ||||
|         new_boundary_conditions = BoundaryCondition({ | ||||
|             'north': BoundaryCondition.Type.Dirichlet, | ||||
|             'south': BoundaryCondition.Type.Dirichlet, | ||||
|             'east': BoundaryCondition.Type.Dirichlet, | ||||
|             'west': BoundaryCondition.Type.Dirichlet | ||||
|         }) | ||||
|         gi, gj = grid.get_coordinate() | ||||
|         # print("gi: " + str(gi) + ", gj: " + str(gj)) | ||||
|         if gi == 0 and boundary_conditions.west != BoundaryCondition.Type.Periodic: | ||||
|             self.west = None | ||||
|             new_boundary_conditions.west = boundary_conditions.west | ||||
|         if gj == 0 and boundary_conditions.south != BoundaryCondition.Type.Periodic: | ||||
|             self.south = None | ||||
|             new_boundary_conditions.south = boundary_conditions.south | ||||
|         if gi == grid.grid[0] - 1 and boundary_conditions.east != BoundaryCondition.Type.Periodic: | ||||
|             self.east = None | ||||
|             new_boundary_conditions.east = boundary_conditions.east | ||||
|         if gj == grid.grid[1] - 1 and boundary_conditions.north != BoundaryCondition.Type.Periodic: | ||||
|             self.north = None | ||||
|             new_boundary_conditions.north = boundary_conditions.north | ||||
|         sim.set_boundary_conditions(new_boundary_conditions) | ||||
| 
 | ||||
|         # Get number of variables | ||||
|         self.nvars = len(self.get_output().gpu_variables) | ||||
| 
 | ||||
|         # Shorthands for computing extents and sizes | ||||
|         gc_x = int(self.sim.get_output()[0].x_halo) | ||||
|         gc_y = int(self.sim.get_output()[0].y_halo) | ||||
|         nx = int(self.sim.nx) | ||||
|         ny = int(self.sim.ny) | ||||
| 
 | ||||
|         # Set regions for ghost cells to read from | ||||
|         # These have the format [x0, y0, width, height] | ||||
|         self.read_e = np.array([nx, 0, gc_x, ny + 2 * gc_y]) | ||||
|         self.read_w = np.array([gc_x, 0, gc_x, ny + 2 * gc_y]) | ||||
|         self.read_n = np.array([gc_x, ny, nx, gc_y]) | ||||
|         self.read_s = np.array([gc_x, gc_y, nx, gc_y]) | ||||
| 
 | ||||
|         # Set regions for ghost cells to write to | ||||
|         self.write_e = self.read_e + np.array([gc_x, 0, 0, 0]) | ||||
|         self.write_w = self.read_w - np.array([gc_x, 0, 0, 0]) | ||||
|         self.write_n = self.read_n + np.array([0, gc_y, 0, 0]) | ||||
|         self.write_s = self.read_s - np.array([0, gc_y, 0, 0]) | ||||
| 
 | ||||
|         self.__create_pagelocked_memory() | ||||
| 
 | ||||
|         self.logger.debug(f"Simulator rank {self.grid.comm.rank} initialized on {MPI.Get_processor_name()}") | ||||
| 
 | ||||
|         self.full_exchange() | ||||
|         sim.context.synchronize() | ||||
| 
 | ||||
|     def substep(self, dt, step_number): | ||||
| 
 | ||||
|         # nvtx.mark("substep start", color="yellow") | ||||
| 
 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_step"] += time.time() | ||||
| 
 | ||||
|         # nvtx.mark("substep external", color="blue") | ||||
|         self.sim.substep(dt, step_number, external=True, internal=False)  # only "internal ghost cells" | ||||
| 
 | ||||
|         # nvtx.mark("substep internal", color="red") | ||||
|         self.sim.substep(dt, step_number, internal=True, external=False)  # "internal ghost cells" excluded | ||||
| 
 | ||||
|         # nvtx.mark("substep full", color="blue") | ||||
|         # self.sim.substep(dt, step_number, external=True, internal=True) | ||||
| 
 | ||||
|         self.sim.swap_buffers() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_step"] += time.time() | ||||
| 
 | ||||
|         # nvtx.mark("exchange", color="blue") | ||||
|         self.full_exchange() | ||||
| 
 | ||||
|         # nvtx.mark("sync start", color="blue") | ||||
|         self.sim.stream.synchronize() | ||||
|         self.sim.internal_stream.synchronize() | ||||
|         # nvtx.mark("sync end", color="blue") | ||||
| 
 | ||||
|         self.profiling_data_mpi["n_time_steps"] += 1 | ||||
| 
 | ||||
|     def get_output(self): | ||||
|         return self.sim.get_output() | ||||
| 
 | ||||
|     def synchronize(self): | ||||
|         self.sim.synchronize() | ||||
| 
 | ||||
|     def check(self): | ||||
|         return self.sim.check() | ||||
| 
 | ||||
|     def compute_dt(self): | ||||
|         local_dt = np.array([np.float32(self.sim.compute_dt())]) | ||||
|         global_dt = np.empty(1, dtype=np.float32) | ||||
|         self.grid.comm.Allreduce(local_dt, global_dt, op=MPI.MIN) | ||||
|         self.logger.debug(f"Local dt: {local_dt[0]}, global dt: {global_dt[0]}") | ||||
|         return global_dt[0] | ||||
| 
 | ||||
|     def get_extent(self): | ||||
|         """ | ||||
|         Function which returns the extent of node with rank  | ||||
|         in the grid | ||||
|         """ | ||||
| 
 | ||||
|         width = self.sim.nx * self.sim.dx | ||||
|         height = self.sim.ny * self.sim.dy | ||||
|         i, j = self.grid.get_coordinate() | ||||
|         x0 = i * width | ||||
|         y0 = j * height | ||||
|         x1 = x0 + width | ||||
|         y1 = y0 + height | ||||
|         return [x0, x1, y0, y1] | ||||
| 
 | ||||
|     def full_exchange(self): | ||||
|         #### | ||||
|         # First transfer internal cells north-south | ||||
|         #### | ||||
| 
 | ||||
|         # Download from the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time() | ||||
| 
 | ||||
|         if self.north is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_n[k, :, :], asynch=True, extent=self.read_n) | ||||
|         if self.south is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_s[k, :, :], asynch=True, extent=self.read_s) | ||||
|         self.sim.stream.synchronize() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time() | ||||
| 
 | ||||
|         # Send/receive to north/south neighbors | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|         comm_send = [] | ||||
|         comm_recv = [] | ||||
|         if self.north is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_n, dest=self.north, tag=4 * self.nt + 0)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_n, source=self.north, tag=4 * self.nt + 1)] | ||||
|         if self.south is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_s, dest=self.south, tag=4 * self.nt + 1)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_s, source=self.south, tag=4 * self.nt + 0)] | ||||
| 
 | ||||
|         # Wait for incoming transfers to complete | ||||
|         for comm in comm_recv: | ||||
|             comm.wait() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|         # Upload to the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
| 
 | ||||
|         if self.north is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_n[k, :, :], extent=self.write_n) | ||||
|         if self.south is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_s[k, :, :], extent=self.write_s) | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
| 
 | ||||
|         # Wait for sending to complete | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|         for comm in comm_send: | ||||
|             comm.wait() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|         #### | ||||
|         # Then transfer east-west including ghost cells that have been filled in by north-south transfer above | ||||
|         #### | ||||
| 
 | ||||
|         # Download from the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time() | ||||
| 
 | ||||
|         if self.east is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_e[k, :, :], asynch=True, extent=self.read_e) | ||||
|         if self.west is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_w[k, :, :], asynch=True, extent=self.read_w) | ||||
|         self.sim.stream.synchronize() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time() | ||||
| 
 | ||||
|         # Send/receive to east/west neighbors | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|         comm_send = [] | ||||
|         comm_recv = [] | ||||
|         if self.east is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_e, dest=self.east, tag=4 * self.nt + 2)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_e, source=self.east, tag=4 * self.nt + 3)] | ||||
|         if self.west is not None: | ||||
|             comm_send += [self.grid.comm.Isend(self.out_w, dest=self.west, tag=4 * self.nt + 3)] | ||||
|             comm_recv += [self.grid.comm.Irecv(self.in_w, source=self.west, tag=4 * self.nt + 2)] | ||||
| 
 | ||||
|         # Wait for incoming transfers to complete | ||||
|         for comm in comm_recv: | ||||
|             comm.wait() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|         # Upload to the GPU | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
| 
 | ||||
|         if self.east is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_e[k, :, :], extent=self.write_e) | ||||
|         if self.west is not None: | ||||
|             for k in range(self.nvars): | ||||
|                 self.sim.u0[k].upload(self.sim.stream, self.in_w[k, :, :], extent=self.write_w) | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time() | ||||
| 
 | ||||
|         # Wait for sending to complete | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|         for comm in comm_send: | ||||
|             comm.wait() | ||||
| 
 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
| 
 | ||||
|     def __create_pagelocked_memory(self): | ||||
|         """ | ||||
|         Allocate data for receiving | ||||
|         Note that east and west also transfer ghost cells | ||||
|         whilst north/south only transfer internal cells | ||||
|         Reuses the width/height defined in the read-extets above | ||||
|         """ | ||||
| 
 | ||||
|         self.in_e = cuda.pagelocked_empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), | ||||
|                                           dtype=np.float32)  # np.empty((self.nvars, self.read_e[3], self.read_e[2]), dtype=np.float32) | ||||
|         self.in_w = cuda.pagelocked_empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), | ||||
|                                           dtype=np.float32)  # np.empty((self.nvars, self.read_w[3], self.read_w[2]), dtype=np.float32) | ||||
|         self.in_n = cuda.pagelocked_empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), | ||||
|                                           dtype=np.float32)  # np.empty((self.nvars, self.read_n[3], self.read_n[2]), dtype=np.float32) | ||||
|         self.in_s = cuda.pagelocked_empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), | ||||
|                                           dtype=np.float32)  # np.empty((self.nvars, self.read_s[3], self.read_s[2]), dtype=np.float32) | ||||
| 
 | ||||
|         # Allocate data for sending | ||||
|         self.out_e = cuda.pagelocked_empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), | ||||
|                                            dtype=np.float32)  # np.empty_like(self.in_e) | ||||
|         self.out_w = cuda.pagelocked_empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), | ||||
|                                            dtype=np.float32)  # np.empty_like(self.in_w) | ||||
|         self.out_n = cuda.pagelocked_empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), | ||||
|                                            dtype=np.float32)  # np.empty_like(self.in_n) | ||||
|         self.out_s = cuda.pagelocked_empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), | ||||
|                                            dtype=np.float32)  # np.empty_like(self.in_s) | ||||
| 
 | ||||
| @ -115,7 +115,7 @@ | ||||
|     "from mpi4py import MPI\n", | ||||
|     "import json\n", | ||||
|     "\n", | ||||
|     "from GPUSimulators import MPISimulator\n", | ||||
|     "import GPUSimulators.mpi as MPISimulator\n", | ||||
|     "from GPUSimulators.common import run_simulation, DataDumper" | ||||
|    ] | ||||
|   }, | ||||
| @ -177,7 +177,6 @@ | ||||
|     "%%px\n", | ||||
|     "\n", | ||||
|     "from GPUSimulators.model import EE2DKP07Dimsplit\n", | ||||
|     "from GPUSimulators.helpers import initial_conditions\n", | ||||
|     "\n", | ||||
|     "my_context.autotuner = None\n", | ||||
|     "\n", | ||||
| @ -199,8 +198,6 @@ | ||||
|     "arguments['theta'] = 1.2\n", | ||||
|     "arguments['grid'] = grid\n", | ||||
|     "\n", | ||||
|     "from GPUSimulators.model import ee2d_kp07_dimsplit, hll2\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "def gen_sim(grid, **kwargs):\n", | ||||
|     "    local_sim = EE2DKP07Dimsplit(**kwargs)\n", | ||||
| @ -260,7 +257,6 @@ | ||||
|     "%%px\n", | ||||
|     "\n", | ||||
|     "from GPUSimulators.model import HLL2\n", | ||||
|     "from GPUSimulators.helpers import initial_conditions\n", | ||||
|     "from GPUSimulators.Simulator import BoundaryCondition\n", | ||||
|     "\n", | ||||
|     "nx = 128\n", | ||||
|  | ||||
| @ -19,6 +19,7 @@ You should have received a copy of the GNU General Public License | ||||
| along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||||
| """ | ||||
| 
 | ||||
| import argparse | ||||
| import numpy as np | ||||
| import gc | ||||
| import time | ||||
| @ -28,19 +29,16 @@ import os | ||||
| 
 | ||||
| # MPI | ||||
| from mpi4py import MPI | ||||
| 
 | ||||
| # CUDA | ||||
| import pycuda.driver as cuda | ||||
| 
 | ||||
| # Simulator engine etc | ||||
| from GPUSimulators import MPISimulator | ||||
| from GPUSimulators.mpi import MPISimulator, MPIGrid | ||||
| from GPUSimulators.common import run_simulation, get_git_hash, get_git_status | ||||
| from GPUSimulators.gpu import CudaContext | ||||
| from GPUSimulators.gpu import KernelContext | ||||
| from GPUSimulators.model import EE2DKP07Dimsplit | ||||
| from GPUSimulators.helpers import initial_conditions as IC | ||||
| 
 | ||||
| import argparse | ||||
| 
 | ||||
| parser = argparse.ArgumentParser(description='Strong and weak scaling experiments.') | ||||
| parser.add_argument('-nx', type=int, default=128) | ||||
| parser.add_argument('-ny', type=int, default=128) | ||||
| @ -83,7 +81,7 @@ logger.info(f"File logger using level {logging.getLevelName(log_level_file)} to | ||||
| # Initialize MPI grid etc | ||||
| #### | ||||
| logger.info("Creating MPI grid") | ||||
| grid = MPISimulator.MPIGrid(MPI.COMM_WORLD) | ||||
| grid = MPIGrid(MPI.COMM_WORLD) | ||||
| 
 | ||||
| #### | ||||
| # Initialize CUDA | ||||
| @ -94,7 +92,7 @@ local_rank = grid.get_local_rank() | ||||
| num_cuda_devices = cuda.Device.count() | ||||
| cuda_device = local_rank % num_cuda_devices | ||||
| logger.info(f"Process {str(local_rank)} using CUDA device {str(cuda_device)}") | ||||
| cuda_context = CudaContext(device=cuda_device, autotuning=False) | ||||
| cuda_context = KernelContext(device=cuda_device, autotuning=False) | ||||
| 
 | ||||
| #### | ||||
| # Set initial conditions | ||||
| @ -138,7 +136,7 @@ logger.info("Running simulation") | ||||
| 
 | ||||
| def genSim(grid, **kwargs): | ||||
|     local_sim = EE2DKP07Dimsplit(**kwargs) | ||||
|     sim = MPISimulator.MPISimulator(local_sim, grid) | ||||
|     sim = MPISimulator(local_sim, grid) | ||||
|     return sim | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Anthony Berg
						Anthony Berg