mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-11-29 17:28:03 +01:00
Refactoring
This commit is contained in:
@@ -1,12 +1,8 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
These CUDA functions implement different types of numerical flux
|
||||
functions for the shallow water equations
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
Copyright (C) 2016, 2017, 2018 SINTEF Digital
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -23,13 +19,14 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
__device__ float pressure(float4 Q, float gamma) {
|
||||
inline __device__ float pressure(float4 Q, float gamma) {
|
||||
const float rho = Q.x;
|
||||
const float rho_u = Q.y;
|
||||
const float rho_v = Q.z;
|
||||
@@ -39,14 +36,13 @@ __device__ float pressure(float4 Q, float gamma) {
|
||||
}
|
||||
|
||||
|
||||
__device__ float4 F_func(const float4 Q, float gamma) {
|
||||
__device__ float4 F_func(const float4 Q, float P) {
|
||||
const float rho = Q.x;
|
||||
const float rho_u = Q.y;
|
||||
const float rho_v = Q.z;
|
||||
const float E = Q.w;
|
||||
|
||||
const float u = rho_u/rho;
|
||||
const float P = pressure(Q, gamma);
|
||||
|
||||
float4 F;
|
||||
|
||||
@@ -56,4 +52,29 @@ __device__ float4 F_func(const float4 Q, float gamma) {
|
||||
F.w = u*(E+P);
|
||||
|
||||
return F;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Central upwind flux function
|
||||
*/
|
||||
__device__ float4 CentralUpwindFlux(const float4 Qm, float4 Qp, const float gamma) {
|
||||
|
||||
const float Pp = pressure(Qp, gamma);
|
||||
const float4 Fp = F_func(Qp, Pp);
|
||||
const float up = Qp.y / Qp.x; // rho*u / rho
|
||||
const float cp = sqrt(gamma*P*Qp.x); // sqrt(gamma*P/rho)
|
||||
|
||||
const float Pm = pressure(Qm, gamma);
|
||||
const float3 Fm = F_func(Qm, Pm);
|
||||
const float um = Qm.y / Qm.x; // rho*u / rho
|
||||
const float cm = sqrt(gamma*P/Qm.x); // sqrt(g*h)
|
||||
|
||||
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
|
||||
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
|
||||
|
||||
return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am);
|
||||
}
|
||||
@@ -1,12 +1,8 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
These CUDA functions implement different types of numerical flux
|
||||
functions for the shallow water equations
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
Copyright (C) 2016, 2017, 2018 SINTEF Digital
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
|
||||
@@ -114,18 +114,23 @@ __global__ void FORCEKernel(
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
__shared__ float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
|
||||
__shared__ float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 1;
|
||||
|
||||
__shared__ float Q[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
|
||||
//Read into shared memory
|
||||
float* Q_ptr[3] = {h0_ptr_, hu0_ptr_, hv0_ptr_};
|
||||
int Q_pitch[3] = {h0_pitch_, hu0_pitch_, hv0_pitch_};
|
||||
readBlock<3, BLOCK_WIDTH+2, BLOCK_HEIGHT+2, BLOCK_WIDTH, BLOCK_HEIGHT>(Q_ptr, Q_pitch, Q, nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary1(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along x, and evolve
|
||||
@@ -135,7 +140,9 @@ __global__ void FORCEKernel(
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary1(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along y, and evolve
|
||||
@@ -145,9 +152,9 @@ __global__ void FORCEKernel(
|
||||
__syncthreads();
|
||||
|
||||
//Write to main memory
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
writeBlock<w, h, gc>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
@@ -121,19 +121,24 @@ __global__ void HLLKernel(
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
|
||||
__shared__ float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 1;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
|
||||
//Read into shared memory
|
||||
float* Q_ptr[3] = {h0_ptr_, hu0_ptr_, hv0_ptr_};
|
||||
int Q_pitch[3] = {h0_pitch_, hu0_pitch_, hv0_pitch_};
|
||||
readBlock<3, BLOCK_WIDTH+2, BLOCK_HEIGHT+2, BLOCK_WIDTH, BLOCK_HEIGHT>(Q_ptr, Q_pitch, Q, nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary1(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute F flux
|
||||
@@ -143,7 +148,9 @@ __global__ void HLLKernel(
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary1(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute G flux
|
||||
@@ -153,9 +160,9 @@ __global__ void HLLKernel(
|
||||
__syncthreads();
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
writeBlock<w, h, gc>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
@@ -155,23 +155,26 @@ __global__ void HLL2Kernel(
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4];
|
||||
__shared__ float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
|
||||
__shared__ float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
|
||||
|
||||
|
||||
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float Qx[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
|
||||
//Read into shared memory
|
||||
float* Q_ptr[3] = {h0_ptr_, hu0_ptr_, hv0_ptr_};
|
||||
int Q_pitch[3] = {h0_pitch_, hu0_pitch_, hv0_pitch_};
|
||||
readBlock<3, BLOCK_WIDTH+4, BLOCK_HEIGHT+4, BLOCK_WIDTH, BLOCK_HEIGHT>(Q_ptr, Q_pitch, Q, nx_+4, ny_+4);
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
@@ -185,7 +188,9 @@ __global__ void HLL2Kernel(
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
@@ -207,7 +212,9 @@ __global__ void HLL2Kernel(
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
@@ -223,10 +230,9 @@ __global__ void HLL2Kernel(
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock2(h1_ptr_, h1_pitch_,
|
||||
hu1_ptr_, hu1_pitch_,
|
||||
hv1_ptr_, hv1_pitch_,
|
||||
Q, nx_, ny_);
|
||||
writeBlock<w, h, 2>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
@@ -118,6 +118,10 @@ __global__ void KP07Kernel(
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
@@ -128,26 +132,28 @@ __global__ void KP07Kernel(
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4];
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
|
||||
//The following slightly wastes memory, but enables us to reuse the
|
||||
//funcitons in common.opencl
|
||||
__shared__ float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
|
||||
__shared__ float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
|
||||
__shared__ float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
|
||||
__shared__ float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
|
||||
__shared__ float Qx[3][h+2][w+2];
|
||||
__shared__ float Qy[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
__shared__ float G[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
float* Q_ptr[3] = {h0_ptr_, hu0_ptr_, hv0_ptr_};
|
||||
int Q_pitch[3] = {h0_pitch_, hu0_pitch_, hv0_pitch_};
|
||||
readBlock<3, BLOCK_WIDTH+4, BLOCK_HEIGHT+4, BLOCK_WIDTH, BLOCK_HEIGHT>(Q_ptr, Q_pitch, Q, nx_+4, ny_+4);
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
|
||||
@@ -146,24 +146,30 @@ __global__ void KP07DimsplitKernel(
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4];
|
||||
__shared__ float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
|
||||
__shared__ float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float Qx[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
float* Q_ptr[3] = {h0_ptr_, hu0_ptr_, hv0_ptr_};
|
||||
int Q_pitch[3] = {h0_pitch_, hu0_pitch_, hv0_pitch_};
|
||||
readBlock<3, BLOCK_WIDTH+4, BLOCK_HEIGHT+4, BLOCK_WIDTH, BLOCK_HEIGHT>(Q_ptr, Q_pitch, Q, nx_+4, ny_+4);
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
@@ -179,7 +185,9 @@ __global__ void KP07DimsplitKernel(
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
@@ -201,7 +209,9 @@ __global__ void KP07DimsplitKernel(
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
@@ -215,10 +225,9 @@ __global__ void KP07DimsplitKernel(
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock2(h1_ptr_, h1_pitch_,
|
||||
hu1_ptr_, hu1_pitch_,
|
||||
hv1_ptr_, hv1_pitch_,
|
||||
Q, nx_, ny_);
|
||||
writeBlock<w, h, 2>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
@@ -97,7 +97,6 @@ void computeFluxG(float Q[3][block_height+2][block_width+2],
|
||||
}
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__
|
||||
void LxFKernel(
|
||||
@@ -114,44 +113,50 @@ void LxFKernel(
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
__shared__ float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2];
|
||||
__shared__ float F[3][BLOCK_HEIGHT][BLOCK_WIDTH+1];
|
||||
__shared__ float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH];
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 1;
|
||||
|
||||
float* Q_ptr[3] = {h0_ptr_, hu0_ptr_, hv0_ptr_};
|
||||
int Q_pitch[3] = {h0_pitch_, hu0_pitch_, hv0_pitch_};
|
||||
__shared__ float Q[3][h+2][w+2];
|
||||
__shared__ float F[3][h ][w+1];
|
||||
__shared__ float G[3][h+1][w ];
|
||||
|
||||
readBlock<3, BLOCK_WIDTH+2, BLOCK_HEIGHT+2, BLOCK_WIDTH, BLOCK_HEIGHT>(Q_ptr, Q_pitch, Q, nx_+2, ny_+2);
|
||||
//Read from global memory
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary1(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x and y axis
|
||||
computeFluxF<BLOCK_WIDTH, BLOCK_HEIGHT>(Q, F, g_, dx_, dt_);
|
||||
computeFluxG<BLOCK_WIDTH, BLOCK_HEIGHT>(Q, G, g_, dy_, dt_);
|
||||
computeFluxF<w, h>(Q, F, g_, dx_, dt_);
|
||||
computeFluxG<w, h>(Q, G, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Evolve for all cells
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
const int i = tx + 1; //Skip local ghost cells, i.e., +1
|
||||
const int j = ty + 1;
|
||||
|
||||
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
|
||||
__syncthreads();
|
||||
|
||||
//Write to main memory
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+2, BLOCK_HEIGHT+2, 1, 1>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
writeBlock<w, h, gc>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
@@ -129,22 +129,29 @@ __global__ void WAFKernel(
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4];
|
||||
__shared__ float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1];
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory Q from global memory
|
||||
float* Q_ptr[3] = {h0_ptr_, hu0_ptr_, hv0_ptr_};
|
||||
int Q_pitch[3] = {h0_pitch_, hu0_pitch_, hv0_pitch_};
|
||||
readBlock<3, BLOCK_WIDTH+4, BLOCK_HEIGHT+4, BLOCK_WIDTH, BLOCK_HEIGHT>(Q_ptr, Q_pitch, Q, nx_+4, ny_+4);
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
@@ -158,7 +165,9 @@ __global__ void WAFKernel(
|
||||
__syncthreads();
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
@@ -176,7 +185,9 @@ __global__ void WAFKernel(
|
||||
__syncthreads();
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
@@ -189,10 +200,9 @@ __global__ void WAFKernel(
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock2(h1_ptr_, h1_pitch_,
|
||||
hu1_ptr_, hu1_pitch_,
|
||||
hv1_ptr_, hv1_pitch_,
|
||||
Q, nx_, ny_);
|
||||
writeBlock<w, h, 2>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
@@ -48,6 +48,10 @@ inline __device__ __host__ float clamp(const float f, const float a, const float
|
||||
return fmaxf(a, fminf(f, b));
|
||||
}
|
||||
|
||||
inline __device__ __host__ int clamp(const int f, const int a, const int b) {
|
||||
return (f < b) ? ( (f > a) ? f : a) : b;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -60,37 +64,27 @@ __device__ float desingularize(float x_, float eps_) {
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Reads a block of data with ghost cells
|
||||
*/
|
||||
template<int vars, int sm_width, int sm_height, int block_width, int block_height>
|
||||
inline __device__ void readBlock(float* ptr_[vars], int pitch_[vars],
|
||||
float shmem[vars][sm_height][sm_width],
|
||||
template<int block_width, int block_height, int ghost_cells>
|
||||
inline __device__ void readBlock(float* ptr_, int pitch_,
|
||||
float shmem[block_height+2*ghost_cells][block_width+2*ghost_cells],
|
||||
const int max_x_, const int max_y_) {
|
||||
|
||||
//Index of block within domain
|
||||
const int bx = blockDim.x * blockIdx.x;
|
||||
const int by = blockDim.y * blockIdx.y;
|
||||
|
||||
float* rows[3];
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
for (int j=threadIdx.y; j<sm_height; j+=block_height) {
|
||||
const int l = clamp(by + j, 0, max_y_-1); // Clamp out of bounds
|
||||
//Loop over all variables
|
||||
for (int j=threadIdx.y; j<block_height+2*ghost_cells; j+=block_height) {
|
||||
const int l = min(by + j, max_y_-1);
|
||||
float* row = (float*) ((char*) ptr_ + pitch_*l);
|
||||
|
||||
//Compute the pointer to current row in the arrays
|
||||
for (int m=0; m<vars; ++m) {
|
||||
rows[m] = (float*) ((char*) ptr_[m] + pitch_[m]*l);
|
||||
}
|
||||
|
||||
for (int i=threadIdx.x; i<sm_width; i+=block_width) {
|
||||
const int k = clamp(bx + i, 0, max_x_-1); // Clamp out of bounds
|
||||
|
||||
for (int m=0; m<vars; ++m) {
|
||||
shmem[m][j][i] = rows[m][k];
|
||||
}
|
||||
for (int i=threadIdx.x; i<block_width+2*ghost_cells; i+=block_width) {
|
||||
const int k = min(bx + i, max_x_-1);
|
||||
|
||||
shmem[j][i] = row[k];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -98,24 +92,23 @@ inline __device__ void readBlock(float* ptr_[vars], int pitch_[vars],
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Writes a block of data to global memory for the shallow water equations.
|
||||
*/
|
||||
template<int sm_width, int sm_height, int offset_x=0, int offset_y=0>
|
||||
template<int block_width, int block_height, int ghost_cells>
|
||||
inline __device__ void writeBlock(float* ptr_, int pitch_,
|
||||
float shmem[sm_height][sm_width],
|
||||
float shmem[block_height+2*ghost_cells][block_width+2*ghost_cells],
|
||||
const int width, const int height) {
|
||||
|
||||
//Index of cell within domain
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + offset_x;
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + offset_y;
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells;
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells;
|
||||
|
||||
//Only write internal cells
|
||||
if (ti < width+offset_x && tj < height+offset_y) {
|
||||
if (ti < width+ghost_cells && tj < height+ghost_cells) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x + offset_x;
|
||||
const int ty = threadIdx.y + offset_y;
|
||||
const int tx = threadIdx.x + ghost_cells;
|
||||
const int ty = threadIdx.y + ghost_cells;
|
||||
|
||||
float* const row = (float*) ((char*) ptr_ + pitch_*tj);
|
||||
row[ti] = shmem[ty][tx];
|
||||
@@ -129,60 +122,93 @@ inline __device__ void writeBlock(float* ptr_, int pitch_,
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Writes a block of data to global memory for the shallow water equations.
|
||||
*/
|
||||
__device__ void writeBlock2(float* h_ptr_, int h_pitch_,
|
||||
float* hu_ptr_, int hu_pitch_,
|
||||
float* hv_ptr_, int hv_pitch_,
|
||||
float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const int nx_, const int ny_) {
|
||||
writeBlock<BLOCK_WIDTH+4, BLOCK_HEIGHT+4, 2, 2>( h_ptr_, h_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+4, BLOCK_HEIGHT+4, 2, 2>(hu_ptr_, hu_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<BLOCK_WIDTH+4, BLOCK_HEIGHT+4, 2, 2>(hv_ptr_, hv_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* No flow boundary conditions for the shallow water equations
|
||||
* with one ghost cell in each direction
|
||||
*/
|
||||
__device__ void noFlowBoundary1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2], const int nx_, const int ny_) {
|
||||
//Global index
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 1; //Skip global ghost cells, i.e., +1
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 1;
|
||||
template<int block_width, int block_height, int ghost_cells, int scale_east_west=1, int scale_north_south=1>
|
||||
__device__ void noFlowBoundary(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) {
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells;
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells;
|
||||
|
||||
//Block-local indices
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
const int i = threadIdx.x + ghost_cells;
|
||||
const int j = threadIdx.y + ghost_cells;
|
||||
|
||||
const int i = tx + 1; //Skip local ghost cells, i.e., +1
|
||||
const int j = ty + 1;
|
||||
|
||||
//Fix boundary conditions
|
||||
if (ti == 1) {
|
||||
Q[0][j][i-1] = Q[0][j][i];
|
||||
Q[1][j][i-1] = -Q[1][j][i];
|
||||
Q[2][j][i-1] = Q[2][j][i];
|
||||
// West boundary
|
||||
if (ti == ghost_cells) {
|
||||
Q[j][i-1] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (ti == nx_) {
|
||||
Q[0][j][i+1] = Q[0][j][i];
|
||||
Q[1][j][i+1] = -Q[1][j][i];
|
||||
Q[2][j][i+1] = Q[2][j][i];
|
||||
if (ghost_cells >= 2 && ti == ghost_cells + 1) {
|
||||
Q[j][i-3] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (tj == 1) {
|
||||
Q[0][j-1][i] = Q[0][j][i];
|
||||
Q[1][j-1][i] = Q[1][j][i];
|
||||
Q[2][j-1][i] = -Q[2][j][i];
|
||||
if (ghost_cells >= 3 && ti == ghost_cells + 2) {
|
||||
Q[j][i-5] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (tj == ny_) {
|
||||
Q[0][j+1][i] = Q[0][j][i];
|
||||
Q[1][j+1][i] = Q[1][j][i];
|
||||
Q[2][j+1][i] = -Q[2][j][i];
|
||||
if (ghost_cells >= 4 && ti == ghost_cells + 3) {
|
||||
Q[j][i-7] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 5 && ti == ghost_cells + 4) {
|
||||
Q[j][i-9] = scale_east_west*Q[j][i];
|
||||
}
|
||||
|
||||
|
||||
|
||||
// East boundary
|
||||
if (ti == nx_ + ghost_cells - 1) {
|
||||
Q[j][i+1] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 2 && ti == nx_ + ghost_cells - 2) {
|
||||
Q[j][i+3] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 3) {
|
||||
Q[j][i+5] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 4) {
|
||||
Q[j][i+7] = scale_east_west*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 5) {
|
||||
Q[j][i+9] = scale_east_west*Q[j][i];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// South boundary
|
||||
if (tj == ghost_cells) {
|
||||
Q[j-1][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 2 && tj == ghost_cells + 1) {
|
||||
Q[j-3][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 3 && tj == ghost_cells + 2) {
|
||||
Q[j-5][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 4 && tj == ghost_cells + 3) {
|
||||
Q[j-7][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 5 && tj == ghost_cells + 4) {
|
||||
Q[j-9][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
|
||||
|
||||
|
||||
// North boundary
|
||||
if (tj == ny_ + ghost_cells - 1) {
|
||||
Q[j+1][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 2 && tj == ny_ + ghost_cells - 2) {
|
||||
Q[j+3][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 3) {
|
||||
Q[j+5][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 4) {
|
||||
Q[j+7][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 5) {
|
||||
Q[j+9][i] = scale_north_south*Q[j][i];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -191,59 +217,9 @@ __device__ void noFlowBoundary1(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2], const
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* No flow boundary conditions for the shallow water equations
|
||||
* with two ghost cells in each direction
|
||||
*/
|
||||
__device__ void noFlowBoundary2(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], const int nx_, const int ny_) {
|
||||
//Global index
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 2; //Skip global ghost cells, i.e., +2
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
|
||||
|
||||
//Block-local indices
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
const int i = tx + 2; //Skip local ghost cells, i.e., +2
|
||||
const int j = ty + 2;
|
||||
|
||||
if (ti == 2) {
|
||||
Q[0][j][i-1] = Q[0][j][i];
|
||||
Q[1][j][i-1] = -Q[1][j][i];
|
||||
Q[2][j][i-1] = Q[2][j][i];
|
||||
|
||||
Q[0][j][i-2] = Q[0][j][i+1];
|
||||
Q[1][j][i-2] = -Q[1][j][i+1];
|
||||
Q[2][j][i-2] = Q[2][j][i+1];
|
||||
}
|
||||
if (ti == nx_+1) {
|
||||
Q[0][j][i+1] = Q[0][j][i];
|
||||
Q[1][j][i+1] = -Q[1][j][i];
|
||||
Q[2][j][i+1] = Q[2][j][i];
|
||||
|
||||
Q[0][j][i+2] = Q[0][j][i-1];
|
||||
Q[1][j][i+2] = -Q[1][j][i-1];
|
||||
Q[2][j][i+2] = Q[2][j][i-1];
|
||||
}
|
||||
if (tj == 2) {
|
||||
Q[0][j-1][i] = Q[0][j][i];
|
||||
Q[1][j-1][i] = Q[1][j][i];
|
||||
Q[2][j-1][i] = -Q[2][j][i];
|
||||
|
||||
Q[0][j-2][i] = Q[0][j+1][i];
|
||||
Q[1][j-2][i] = Q[1][j+1][i];
|
||||
Q[2][j-2][i] = -Q[2][j+1][i];
|
||||
}
|
||||
if (tj == ny_+1) {
|
||||
Q[0][j+1][i] = Q[0][j][i];
|
||||
Q[1][j+1][i] = Q[1][j][i];
|
||||
Q[2][j+1][i] = -Q[2][j][i];
|
||||
|
||||
Q[0][j+2][i] = Q[0][j-1][i];
|
||||
Q[1][j+2][i] = Q[1][j-1][i];
|
||||
Q[2][j+2][i] = -Q[2][j-1][i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user