Refactoring

This commit is contained in:
André R. Brodtkorb
2018-11-01 20:43:28 +01:00
parent 2b899d1c80
commit d9eb72d78c
6 changed files with 220 additions and 221 deletions

View File

@@ -27,97 +27,95 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
__device__
void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[4][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[4][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float gamma_, const float dx_, const float dt_) {
int j=threadIdx.y;
const int l = j + 2; //Skip ghost cells
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
const int k = i + 1;
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float4 Q_rl = make_float4(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1],
Q[3][l][k+1] - 0.5f*Qx[3][j][i+1]);
const float4 Q_rr = make_float4(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1],
Q[3][l][k+1] + 0.5f*Qx[3][j][i+1]);
const float4 Q_ll = make_float4(Q[0][l][k] - 0.5f*Qx[0][j][i],
Q[1][l][k] - 0.5f*Qx[1][j][i],
Q[2][l][k] - 0.5f*Qx[2][j][i],
Q[3][l][k] - 0.5f*Qx[3][j][i]);
const float4 Q_lr = make_float4(Q[0][l][k] + 0.5f*Qx[0][j][i],
Q[1][l][k] + 0.5f*Qx[1][j][i],
Q[2][l][k] + 0.5f*Qx[2][j][i],
Q[3][l][k] + 0.5f*Qx[3][j][i]);
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
float Qx[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float gamma_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float4 Q_rl = make_float4(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1],
Q[3][j][i+1] - 0.5f*Qx[3][j][i+1]);
const float4 Q_rr = make_float4(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1],
Q[3][j][i+1] + 0.5f*Qx[3][j][i+1]);
// Compute flux based on prediction
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
F[3][j][i] = flux.w;
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qx[0][j][i],
Q[1][j][i] - 0.5f*Qx[1][j][i],
Q[2][j][i] - 0.5f*Qx[2][j][i],
Q[3][j][i] - 0.5f*Qx[3][j][i]);
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qx[0][j][i],
Q[1][j][i] + 0.5f*Qx[1][j][i],
Q[2][j][i] + 0.5f*Qx[2][j][i],
Q[3][j][i] + 0.5f*Qx[3][j][i]);
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
// Compute flux based on prediction
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
F[3][j][i] = flux.w;
}
}
}
__device__
void computeFluxG(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[4][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[4][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float gamma_, const float dy_, const float dt_) {
int i=threadIdx.x;
const int k = i + 2; //Skip ghost cells
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
const int l = j + 1;
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float4 Q_rl = make_float4(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i],
Q[3][l+1][k] - 0.5f*Qy[3][j+1][i]);
const float4 Q_rr = make_float4(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i],
Q[3][l+1][k] + 0.5f*Qy[3][j+1][i]);
float Qy[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float gamma_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float4 Q_rl = make_float4(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i],
Q[3][j+1][i] - 0.5f*Qy[3][j+1][i]);
const float4 Q_rr = make_float4(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i],
Q[3][j+1][i] + 0.5f*Qy[3][j+1][i]);
const float4 Q_ll = make_float4(Q[0][l][k] - 0.5f*Qy[0][j][i],
Q[2][l][k] - 0.5f*Qy[2][j][i],
Q[1][l][k] - 0.5f*Qy[1][j][i],
Q[3][l][k] - 0.5f*Qy[3][j][i]);
const float4 Q_lr = make_float4(Q[0][l][k] + 0.5f*Qy[0][j][i],
Q[2][l][k] + 0.5f*Qy[2][j][i],
Q[1][l][k] + 0.5f*Qy[1][j][i],
Q[3][l][k] + 0.5f*Qy[3][j][i]);
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qy[0][j][i],
Q[2][j][i] - 0.5f*Qy[2][j][i],
Q[1][j][i] - 0.5f*Qy[1][j][i],
Q[3][j][i] - 0.5f*Qy[3][j][i]);
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qy[0][j][i],
Q[2][j][i] + 0.5f*Qy[2][j][i],
Q[1][j][i] + 0.5f*Qy[1][j][i],
Q[3][j][i] + 0.5f*Qy[3][j][i]);
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
// Compute flux based on prediction
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
G[3][j][i] = flux.w;
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
// Compute flux based on prediction
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
G[3][j][i] = flux.w;
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
@@ -150,8 +148,8 @@ __global__ void KP07DimsplitKernel(
//Shared memory variables
__shared__ float Q[4][h+4][w+4];
__shared__ float Qx[4][h+2][w+2];
__shared__ float F[4][h+1][w+1];
__shared__ float Qx[4][h+4][w+4];
__shared__ float F[4][h+4][w+4];
@@ -162,14 +160,12 @@ __global__ void KP07DimsplitKernel(
readBlock<w, h, gc>( E0_ptr_, E0_pitch_, Q[3], nx_+4, ny_+4);
__syncthreads();
//Fix boundary conditions
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
__syncthreads();
//Step 0 => evolve x first, then y
@@ -186,12 +182,11 @@ __global__ void KP07DimsplitKernel(
//Set boundary conditions
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc, vars>(Q, Qx, theta_);
__syncthreads();
@@ -200,7 +195,7 @@ __global__ void KP07DimsplitKernel(
__syncthreads();
evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
__syncthreads();
__syncthreads();
}
//Step 1 => evolve y first, then x
@@ -208,14 +203,16 @@ __global__ void KP07DimsplitKernel(
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
__syncthreads();
//Set boundary conditions
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[1], nx_, ny_);
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
__syncthreads();
@@ -223,8 +220,10 @@ __global__ void KP07DimsplitKernel(
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc, vars>(Q, F, dx_, dt_);
__syncthreads();
}