mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-11-27 22:04:20 +01:00
refactor(common): move sum array method to a static method
This commit is contained in:
parent
74b9fe7e66
commit
d61e57bf06
@ -8,45 +8,6 @@ from ..arkawa2d import BaseArakawaA2D
|
||||
from .array2d import HIPArray2D
|
||||
|
||||
|
||||
def _sum_array(array: HIPArray2D):
|
||||
"""
|
||||
Sum all the elements in HIPArray2D using hipblas.
|
||||
Args:
|
||||
array: A HIPArray2D to compute the sum of.
|
||||
"""
|
||||
result_h = np.zeros(1, dtype=array.dtype)
|
||||
num_bytes = result_h.strides[0]
|
||||
result_d = hip_check(hip.hipMalloc(num_bytes))
|
||||
|
||||
# Sum the ``data_h`` array using hipblas
|
||||
handle = hip_check(hipblas.hipblasCreate())
|
||||
|
||||
# Using pitched memory, so we need to sum row by row
|
||||
total_sum_d = hip_check(hip.hipMalloc(num_bytes))
|
||||
hip_check(hip.hipMemset(total_sum_d, 0, num_bytes))
|
||||
|
||||
width, height = array.shape
|
||||
|
||||
for y in range(height):
|
||||
row_ptr = int(array.data) + y * array.pitch_d
|
||||
|
||||
hip_check(hipblas.hipblasSasum(handle, width, row_ptr, 1, result_d))
|
||||
|
||||
hip_check(hipblas.hipblasSaxpy(handle, 1, ctypes.c_float(1.0), result_d, 1, total_sum_d, 1))
|
||||
|
||||
hip_check(hip.hipMemcpy(result_h, total_sum_d, num_bytes, hip.hipMemcpyKind.hipMemcpyDeviceToHost))
|
||||
|
||||
# Copy over the result from the device
|
||||
hip_check(hip.hipMemcpy(result_h, total_sum_d, num_bytes, hip.hipMemcpyKind.hipMemcpyDeviceToHost))
|
||||
|
||||
# Cleanup
|
||||
hip_check(hipblas.hipblasDestroy(handle))
|
||||
hip_check(hip.hipFree(result_d))
|
||||
hip_check(hip.hipFree(total_sum_d))
|
||||
|
||||
return result_h
|
||||
|
||||
|
||||
class HIPArakawaA2D(BaseArakawaA2D):
|
||||
"""
|
||||
A class representing an Arakawa A type (unstaggered, logically Cartesian) grid
|
||||
@ -63,9 +24,51 @@ class HIPArakawaA2D(BaseArakawaA2D):
|
||||
Checks that data is still sane
|
||||
"""
|
||||
for i, gpu_variable in enumerate(self.gpu_variables):
|
||||
var_sum = _sum_array(gpu_variable)
|
||||
var_sum = self.__sum_array(gpu_variable)
|
||||
self.logger.debug(f"Data {i} with size [{gpu_variable.nx} x {gpu_variable.ny}] "
|
||||
+ f"has average {var_sum / (gpu_variable.nx * gpu_variable.ny)}")
|
||||
|
||||
if np.isnan(var_sum):
|
||||
raise ValueError("Data contains NaN values!")
|
||||
|
||||
@staticmethod
|
||||
def __sum_array(array: HIPArray2D) -> np.ndarray[tuple[int]]:
|
||||
"""
|
||||
Sum all the elements in HIPArray2D using hipblas.
|
||||
Args:
|
||||
array: A HIPArray2D to compute the sum of.
|
||||
Returns:
|
||||
The sum of all the elements in ``array``.
|
||||
"""
|
||||
dtype = array.dtype
|
||||
result_h = np.zeros(1, dtype=dtype)
|
||||
num_bytes = dtype.itemsize
|
||||
result_d = hip_check(hip.hipMalloc(num_bytes))
|
||||
|
||||
# Sum the ``data_h`` array using hipblas
|
||||
handle = hip_check(hipblas.hipblasCreate())
|
||||
|
||||
# Using pitched memory, so we need to sum row by row
|
||||
total_sum_d = hip_check(hip.hipMalloc(num_bytes))
|
||||
hip_check(hip.hipMemset(total_sum_d, 0, num_bytes))
|
||||
|
||||
width, height = array.shape
|
||||
|
||||
for y in range(height):
|
||||
row_ptr = int(array.data) + y * array.pitch_d
|
||||
|
||||
hip_check(hipblas.hipblasSasum(handle, width, row_ptr, 1, result_d))
|
||||
|
||||
hip_check(hipblas.hipblasSaxpy(handle, 1, ctypes.c_float(1.0), result_d, 1, total_sum_d, 1))
|
||||
|
||||
hip_check(hip.hipMemcpy(result_h, total_sum_d, num_bytes, hip.hipMemcpyKind.hipMemcpyDeviceToHost))
|
||||
|
||||
# Copy over the result from the device
|
||||
hip_check(hip.hipMemcpy(result_h, total_sum_d, num_bytes, hip.hipMemcpyKind.hipMemcpyDeviceToHost))
|
||||
|
||||
# Cleanup
|
||||
hip_check(hipblas.hipblasDestroy(handle))
|
||||
hip_check(hip.hipFree(result_d))
|
||||
hip_check(hip.hipFree(total_sum_d))
|
||||
|
||||
return result_h
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user