mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 06:24:13 +02:00
Fixed general MPI framework
This commit is contained in:
parent
6b7de7b755
commit
b03afc3d81
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -68,6 +68,7 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
1,
|
||||||
block_width, block_height)
|
block_width, block_height)
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
@ -101,7 +102,7 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
dt = min(dt_x, dt_y)
|
dt = min(dt_x, dt_y)
|
||||||
self.cfl_data.fill(dt, stream=self.stream)
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def substep(self, dt, step_number):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
self.nx, self.ny,
|
self.nx, self.ny,
|
||||||
self.dx, self.dy, dt,
|
self.dx, self.dy, dt,
|
||||||
@ -115,8 +116,6 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
|
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
|
||||||
self.cfl_data.gpudata)
|
self.cfl_data.gpudata)
|
||||||
self.u0, self.u1 = self.u1, self.u0
|
self.u0, self.u1 = self.u1, self.u0
|
||||||
self.t += dt
|
|
||||||
self.nt += 1
|
|
||||||
|
|
||||||
def download(self):
|
def download(self):
|
||||||
return self.u0.download(self.stream)
|
return self.u0.download(self.stream)
|
||||||
@ -127,4 +126,4 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5
|
return max_dt
|
@ -63,6 +63,7 @@ class HLL (Simulator.BaseSimulator):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
1,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
@ -96,7 +97,7 @@ class HLL (Simulator.BaseSimulator):
|
|||||||
dt = min(dt_x, dt_y)
|
dt = min(dt_x, dt_y)
|
||||||
self.cfl_data.fill(dt, stream=self.stream)
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def substep(self, dt, step_number):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
self.nx, self.ny,
|
self.nx, self.ny,
|
||||||
self.dx, self.dy, dt,
|
self.dx, self.dy, dt,
|
||||||
@ -110,8 +111,6 @@ class HLL (Simulator.BaseSimulator):
|
|||||||
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
|
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
|
||||||
self.cfl_data.gpudata)
|
self.cfl_data.gpudata)
|
||||||
self.u0, self.u1 = self.u1, self.u0
|
self.u0, self.u1 = self.u1, self.u0
|
||||||
self.t += dt
|
|
||||||
self.nt += 1
|
|
||||||
|
|
||||||
def download(self):
|
def download(self):
|
||||||
return self.u0.download(self.stream)
|
return self.u0.download(self.stream)
|
||||||
|
@ -66,6 +66,7 @@ class HLL2 (Simulator.BaseSimulator):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
2,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.theta = np.float32(theta)
|
self.theta = np.float32(theta)
|
||||||
@ -101,12 +102,8 @@ class HLL2 (Simulator.BaseSimulator):
|
|||||||
dt = min(dt_x, dt_y)
|
dt = min(dt_x, dt_y)
|
||||||
self.cfl_data.fill(dt, stream=self.stream)
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def substep(self, dt, step_number):
|
||||||
self.substepDimsplit(dt*0.5, 0)
|
self.substepDimsplit(dt*0.5, step_number)
|
||||||
self.substepDimsplit(dt*0.5, 1)
|
|
||||||
|
|
||||||
self.t += dt
|
|
||||||
self.nt += 2
|
|
||||||
|
|
||||||
def substepDimsplit(self, dt, substep):
|
def substepDimsplit(self, dt, substep):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
|
@ -68,6 +68,7 @@ class KP07 (Simulator.BaseSimulator):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
order,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.theta = np.float32(theta)
|
self.theta = np.float32(theta)
|
||||||
@ -104,16 +105,8 @@ class KP07 (Simulator.BaseSimulator):
|
|||||||
self.cfl_data.fill(dt, stream=self.stream)
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
|
|
||||||
def step(self, dt):
|
def substep(self, dt, step_number):
|
||||||
if (self.order == 1):
|
self.substepRK(dt, step_number)
|
||||||
self.substepRK(dt, substep=0)
|
|
||||||
elif (self.order == 2):
|
|
||||||
self.substepRK(dt, substep=0)
|
|
||||||
self.substepRK(dt, substep=1)
|
|
||||||
else:
|
|
||||||
raise(NotImplementedError("Order {:d} is not implemented".format(self.order)))
|
|
||||||
self.t += dt
|
|
||||||
self.nt += 1
|
|
||||||
|
|
||||||
|
|
||||||
def substepRK(self, dt, substep):
|
def substepRK(self, dt, substep):
|
||||||
|
@ -68,6 +68,7 @@ class KP07_dimsplit(Simulator.BaseSimulator):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
2,
|
||||||
block_width, block_height)
|
block_width, block_height)
|
||||||
self.gc_x = 2
|
self.gc_x = 2
|
||||||
self.gc_y = 2
|
self.gc_y = 2
|
||||||
@ -104,12 +105,8 @@ class KP07_dimsplit(Simulator.BaseSimulator):
|
|||||||
dt = min(dt_x, dt_y)
|
dt = min(dt_x, dt_y)
|
||||||
self.cfl_data.fill(dt, stream=self.stream)
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def substep(self, dt, step_number):
|
||||||
self.substepDimsplit(dt*0.5, 0)
|
self.substepDimsplit(dt*0.5, step_number)
|
||||||
self.substepDimsplit(dt*0.5, 1)
|
|
||||||
|
|
||||||
self.t += dt
|
|
||||||
self.nt += 2
|
|
||||||
|
|
||||||
def substepDimsplit(self, dt, substep):
|
def substepDimsplit(self, dt, substep):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
@ -128,7 +125,6 @@ class KP07_dimsplit(Simulator.BaseSimulator):
|
|||||||
self.cfl_data.gpudata)
|
self.cfl_data.gpudata)
|
||||||
self.u0, self.u1 = self.u1, self.u0
|
self.u0, self.u1 = self.u1, self.u0
|
||||||
|
|
||||||
|
|
||||||
def download(self):
|
def download(self):
|
||||||
return self.u0.download(self.stream)
|
return self.u0.download(self.stream)
|
||||||
|
|
||||||
@ -138,4 +134,4 @@ class KP07_dimsplit(Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt
|
return max_dt*0.5
|
@ -64,6 +64,7 @@ class LxF (Simulator.BaseSimulator):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
1,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
@ -97,7 +98,7 @@ class LxF (Simulator.BaseSimulator):
|
|||||||
dt = min(dt_x, dt_y)
|
dt = min(dt_x, dt_y)
|
||||||
self.cfl_data.fill(dt, stream=self.stream)
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def substep(self, dt, step_number):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
self.nx, self.ny,
|
self.nx, self.ny,
|
||||||
self.dx, self.dy, dt,
|
self.dx, self.dy, dt,
|
||||||
@ -111,8 +112,6 @@ class LxF (Simulator.BaseSimulator):
|
|||||||
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
|
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
|
||||||
self.cfl_data.gpudata)
|
self.cfl_data.gpudata)
|
||||||
self.u0, self.u1 = self.u1, self.u0
|
self.u0, self.u1 = self.u1, self.u0
|
||||||
self.t += dt
|
|
||||||
self.nt += 1
|
|
||||||
|
|
||||||
def download(self):
|
def download(self):
|
||||||
return self.u0.download(self.stream)
|
return self.u0.download(self.stream)
|
||||||
|
269
GPUSimulators/MPISimulator.py
Normal file
269
GPUSimulators/MPISimulator.py
Normal file
@ -0,0 +1,269 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
"""
|
||||||
|
This python module implements MPI simulator class
|
||||||
|
|
||||||
|
Copyright (C) 2018 SINTEF Digital
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from GPUSimulators import Simulator
|
||||||
|
import numpy as np
|
||||||
|
from mpi4py import MPI
|
||||||
|
|
||||||
|
class MPISimulator(Simulator.BaseSimulator):
|
||||||
|
def __init__(self, sim, comm):
|
||||||
|
self.logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
autotuner = sim.context.autotuner
|
||||||
|
sim.context.autotuner = None;
|
||||||
|
super().__init__(sim.context,
|
||||||
|
sim.nx, sim.ny,
|
||||||
|
sim.dx, sim.dy,
|
||||||
|
sim.cfl_scale,
|
||||||
|
sim.num_substeps,
|
||||||
|
sim.block_size[0], sim.block_size[1])
|
||||||
|
sim.context.autotuner = autotuner
|
||||||
|
|
||||||
|
self.sim = sim
|
||||||
|
self.comm = comm
|
||||||
|
self.rank = comm.rank
|
||||||
|
|
||||||
|
#Get global dimensions
|
||||||
|
self.grid = MPISimulator.getFactors(self.comm.size, 2)
|
||||||
|
|
||||||
|
#Get neighbor node ids
|
||||||
|
self.east = self.getEast()
|
||||||
|
self.west = self.getWest()
|
||||||
|
self.north = self.getNorth()
|
||||||
|
self.south = self.getSouth()
|
||||||
|
|
||||||
|
#Get local dimensions
|
||||||
|
self.gc_x = int(self.sim.u0[0].x_halo)
|
||||||
|
self.gc_y = int(self.sim.u0[0].y_halo)
|
||||||
|
self.nx = int(self.sim.nx)
|
||||||
|
self.ny = int(self.sim.ny)
|
||||||
|
self.nvars = 3
|
||||||
|
|
||||||
|
#Allocate data for receiving
|
||||||
|
#Note that east and west also transfer ghost cells
|
||||||
|
#whilst north/south only transfer internal cells
|
||||||
|
self.in_e = np.empty((self.nvars, self.ny + 2*self.gc_y, self.gc_x), dtype=np.float32)
|
||||||
|
self.in_w = np.empty((self.nvars, self.ny + 2*self.gc_y, self.gc_x), dtype=np.float32)
|
||||||
|
self.in_n = np.empty((self.nvars, self.gc_y, self.nx), dtype=np.float32)
|
||||||
|
self.in_s = np.empty((self.nvars, self.gc_y, self.nx), dtype=np.float32)
|
||||||
|
|
||||||
|
#Allocate data for sending
|
||||||
|
self.out_e = np.empty((self.nvars, self.ny + 2*self.gc_y, self.gc_x), dtype=np.float32)
|
||||||
|
self.out_w = np.empty((self.nvars, self.ny + 2*self.gc_y, self.gc_x), dtype=np.float32)
|
||||||
|
self.out_n = np.empty((self.nvars, self.gc_y, self.nx), dtype=np.float32)
|
||||||
|
self.out_s = np.empty((self.nvars, self.gc_y, self.nx), dtype=np.float32)
|
||||||
|
|
||||||
|
#Set regions for ghost cells to read from
|
||||||
|
self.read_e = [ self.nx, 0, self.gc_x, self.ny + 2*self.gc_y]
|
||||||
|
self.read_w = [self.gc_x, 0, self.gc_x, self.ny + 2*self.gc_y]
|
||||||
|
self.read_n = [self.gc_x, self.ny, self.nx, self.gc_y]
|
||||||
|
self.read_s = [self.gc_x, self.gc_y, self.nx, self.gc_y]
|
||||||
|
|
||||||
|
#Set regions for ghost cells to write to
|
||||||
|
self.write_e = [self.nx+self.gc_x, 0, self.gc_x, self.ny + 2*self.gc_y]
|
||||||
|
self.write_w = [ 0, 0, self.gc_x, self.ny + 2*self.gc_y]
|
||||||
|
self.write_n = [ self.gc_x, self.ny+self.gc_y, self.nx, self.gc_y]
|
||||||
|
self.write_s = [ self.gc_x, 0, self.nx, self.gc_y]
|
||||||
|
|
||||||
|
#Initialize ghost cells
|
||||||
|
self.exchange()
|
||||||
|
|
||||||
|
self.logger.debug("Simlator rank {:d} created ".format(self.rank))
|
||||||
|
|
||||||
|
|
||||||
|
def substep(self, dt, step_number):
|
||||||
|
self.sim.substep(dt, step_number)
|
||||||
|
self.exchange()
|
||||||
|
|
||||||
|
def download(self):
|
||||||
|
raise(NotImplementedError("Needs to be implemented!"))
|
||||||
|
|
||||||
|
def synchronize(self):
|
||||||
|
raise(NotImplementedError("Needs to be implemented!"))
|
||||||
|
|
||||||
|
def check(self):
|
||||||
|
return self.sim.check()
|
||||||
|
|
||||||
|
def computeDt(self):
|
||||||
|
raise(NotImplementedError("Needs to be implemented!"))
|
||||||
|
|
||||||
|
def exchange(self):
|
||||||
|
#Shorthands for dimensions
|
||||||
|
gc_x = self.gc_x
|
||||||
|
gc_y = self.gc_y
|
||||||
|
nx = self.nx
|
||||||
|
ny = self.ny
|
||||||
|
|
||||||
|
####
|
||||||
|
# First transfer internal cells north-south
|
||||||
|
####
|
||||||
|
|
||||||
|
#Download from the GPU
|
||||||
|
for k in range(self.nvars):
|
||||||
|
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_n[k,:,:], async=True, extent=self.read_n)
|
||||||
|
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_s[k,:,:], async=True, extent=self.read_s)
|
||||||
|
self.sim.stream.synchronize()
|
||||||
|
|
||||||
|
#Send to north/south neighbours
|
||||||
|
comm_send = []
|
||||||
|
comm_send += [self.comm.Isend(self.out_n, dest=self.north, tag=0)]
|
||||||
|
comm_send += [self.comm.Isend(self.out_s, dest=self.south, tag=1)]
|
||||||
|
|
||||||
|
#Receive from north/south neighbors
|
||||||
|
comm_recv = []
|
||||||
|
comm_recv += [self.comm.Irecv(self.in_n, source=self.north, tag=1)]
|
||||||
|
comm_recv += [self.comm.Irecv(self.in_s, source=self.south, tag=0)]
|
||||||
|
|
||||||
|
#Wait for incoming transfers to complete
|
||||||
|
for comm in comm_recv:
|
||||||
|
comm.wait()
|
||||||
|
|
||||||
|
#Upload to the GPU
|
||||||
|
for k in range(self.nvars):
|
||||||
|
self.sim.u0[k].upload(self.sim.stream, self.in_n[k,:,:], extent=self.write_n)
|
||||||
|
self.sim.u0[k].upload(self.sim.stream, self.in_s[k,:,:], extent=self.write_s)
|
||||||
|
|
||||||
|
#Wait for sending to complete
|
||||||
|
for comm in comm_send:
|
||||||
|
comm.wait()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####
|
||||||
|
# Then transfer east-west including ghost cells that have been filled in by north-south transfer above
|
||||||
|
# Fixme: This can be optimized by overlapping the GPU transfer with the pervious MPI transfer if the corners
|
||||||
|
# har handled on the CPU
|
||||||
|
####
|
||||||
|
|
||||||
|
#Download from the GPU
|
||||||
|
for k in range(self.nvars):
|
||||||
|
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_e[k,:,:], async=True, extent=self.read_e)
|
||||||
|
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_w[k,:,:], async=True, extent=self.read_w)
|
||||||
|
self.sim.stream.synchronize()
|
||||||
|
|
||||||
|
#Send to east/west neighbours
|
||||||
|
comm_send = []
|
||||||
|
comm_send += [self.comm.Isend(self.out_e, dest=self.east, tag=2)]
|
||||||
|
comm_send += [self.comm.Isend(self.out_w, dest=self.west, tag=3)]
|
||||||
|
|
||||||
|
#Receive from east/west neighbors
|
||||||
|
comm_recv = []
|
||||||
|
comm_recv += [self.comm.Irecv(self.in_e, source=self.east, tag=3)]
|
||||||
|
comm_recv += [self.comm.Irecv(self.in_w, source=self.west, tag=2)]
|
||||||
|
|
||||||
|
#Wait for incoming transfers to complete
|
||||||
|
for comm in comm_recv:
|
||||||
|
comm.wait()
|
||||||
|
|
||||||
|
#Upload to the GPU
|
||||||
|
for k in range(self.nvars):
|
||||||
|
self.sim.u0[k].upload(self.sim.stream, self.in_e[k,:,:], extent=self.write_e)
|
||||||
|
self.sim.u0[k].upload(self.sim.stream, self.in_w[k,:,:], extent=self.write_w)
|
||||||
|
|
||||||
|
#Wait for sending to complete
|
||||||
|
for comm in comm_send:
|
||||||
|
comm.wait()
|
||||||
|
|
||||||
|
|
||||||
|
def getCoordinate(self, rank):
|
||||||
|
i = (rank % self.grid[0])
|
||||||
|
j = (rank // self.grid[0])
|
||||||
|
return i, j
|
||||||
|
|
||||||
|
def getRank(self, i, j):
|
||||||
|
return j*self.grid[0] + i
|
||||||
|
|
||||||
|
def getEast(self):
|
||||||
|
i, j = self.getCoordinate(self.rank)
|
||||||
|
i = (i+1) % self.grid[0]
|
||||||
|
return self.getRank(i, j)
|
||||||
|
|
||||||
|
def getWest(self):
|
||||||
|
i, j = self.getCoordinate(self.rank)
|
||||||
|
i = (i+self.grid[0]-1) % self.grid[0]
|
||||||
|
return self.getRank(i, j)
|
||||||
|
|
||||||
|
def getNorth(self):
|
||||||
|
i, j = self.getCoordinate(self.rank)
|
||||||
|
j = (j+1) % self.grid[1]
|
||||||
|
return self.getRank(i, j)
|
||||||
|
|
||||||
|
def getSouth(self):
|
||||||
|
i, j = self.getCoordinate(self.rank)
|
||||||
|
j = (j+self.grid[1]-1) % self.grid[1]
|
||||||
|
return self.getRank(i, j)
|
||||||
|
|
||||||
|
def getFactors(number, num_factors):
|
||||||
|
# Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors
|
||||||
|
# Original code by https://stackoverflow.com/users/3928385/ishamael
|
||||||
|
|
||||||
|
#Dictionary to remember already computed permutations
|
||||||
|
memo = {}
|
||||||
|
def dp(n, left): # returns tuple (cost, [factors])
|
||||||
|
"""
|
||||||
|
Recursively searches through all factorizations
|
||||||
|
"""
|
||||||
|
|
||||||
|
#Already tried: return existing result
|
||||||
|
if (n, left) in memo:
|
||||||
|
return memo[(n, left)]
|
||||||
|
|
||||||
|
#Spent all factors: return number itself
|
||||||
|
if left == 1:
|
||||||
|
return (n, [n])
|
||||||
|
|
||||||
|
#Find new factor
|
||||||
|
i = 2
|
||||||
|
best = n
|
||||||
|
bestTuple = [n]
|
||||||
|
while i * i < n:
|
||||||
|
#If factor found
|
||||||
|
if n % i == 0:
|
||||||
|
#Factorize remainder
|
||||||
|
rem = dp(n // i, left - 1)
|
||||||
|
|
||||||
|
#If new permutation better, save it
|
||||||
|
if rem[0] + i < best:
|
||||||
|
best = rem[0] + i
|
||||||
|
bestTuple = [i] + rem[1]
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
#Store calculation
|
||||||
|
memo[(n, left)] = (best, bestTuple)
|
||||||
|
return memo[(n, left)]
|
||||||
|
|
||||||
|
assert(isinstance(number, int))
|
||||||
|
assert(isinstance(num_factors, int))
|
||||||
|
|
||||||
|
factors = dp(number, num_factors)[1]
|
||||||
|
|
||||||
|
if (len(factors) < num_factors):
|
||||||
|
#Split problematic 4
|
||||||
|
if (4 in factors):
|
||||||
|
factors.remove(4)
|
||||||
|
factors.append(2)
|
||||||
|
factors.append(2)
|
||||||
|
|
||||||
|
#Pad with ones to guarantee num_factors
|
||||||
|
factors = factors + [1]*(num_factors - len(factors))
|
||||||
|
return factors
|
@ -106,6 +106,7 @@ class BaseSimulator(object):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
num_substeps,
|
||||||
block_width, block_height):
|
block_width, block_height):
|
||||||
"""
|
"""
|
||||||
Initialization routine
|
Initialization routine
|
||||||
@ -119,6 +120,8 @@ class BaseSimulator(object):
|
|||||||
dx: Grid cell spacing along x-axis (20 000 m)
|
dx: Grid cell spacing along x-axis (20 000 m)
|
||||||
dy: Grid cell spacing along y-axis (20 000 m)
|
dy: Grid cell spacing along y-axis (20 000 m)
|
||||||
dt: Size of each timestep (90 s)
|
dt: Size of each timestep (90 s)
|
||||||
|
cfl_scale: Courant number
|
||||||
|
num_substeps: Number of substeps to perform for a full step
|
||||||
"""
|
"""
|
||||||
#Get logger
|
#Get logger
|
||||||
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
|
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
|
||||||
@ -132,6 +135,7 @@ class BaseSimulator(object):
|
|||||||
self.dx = np.float32(dx)
|
self.dx = np.float32(dx)
|
||||||
self.dy = np.float32(dy)
|
self.dy = np.float32(dy)
|
||||||
self.cfl_scale = cfl_scale
|
self.cfl_scale = cfl_scale
|
||||||
|
self.num_substeps = num_substeps
|
||||||
|
|
||||||
#Handle autotuning block size
|
#Handle autotuning block size
|
||||||
if (self.context.autotuner):
|
if (self.context.autotuner):
|
||||||
@ -204,6 +208,16 @@ class BaseSimulator(object):
|
|||||||
"""
|
"""
|
||||||
Function which performs one single timestep of size dt
|
Function which performs one single timestep of size dt
|
||||||
"""
|
"""
|
||||||
|
for i in range(self.num_substeps):
|
||||||
|
self.substep(dt, i)
|
||||||
|
|
||||||
|
self.t += dt
|
||||||
|
self.nt += 1
|
||||||
|
|
||||||
|
def substep(self, dt, step_number):
|
||||||
|
"""
|
||||||
|
Function which performs one single substep with stepsize dt
|
||||||
|
"""
|
||||||
raise(NotImplementedError("Needs to be implemented in subclass"))
|
raise(NotImplementedError("Needs to be implemented in subclass"))
|
||||||
|
|
||||||
def download(self):
|
def download(self):
|
||||||
|
@ -62,6 +62,7 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy,
|
dx, dy,
|
||||||
cfl_scale,
|
cfl_scale,
|
||||||
|
2,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
@ -95,11 +96,8 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
dt = min(dt_x, dt_y)
|
dt = min(dt_x, dt_y)
|
||||||
self.cfl_data.fill(dt, stream=self.stream)
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def substep(self, dt, step_number):
|
||||||
self.substepDimsplit(dt*0.5, substep=0)
|
self.substepDimsplit(dt*0.5, step_number)
|
||||||
self.substepDimsplit(dt*0.5, substep=1)
|
|
||||||
self.t += dt
|
|
||||||
self.nt += 2
|
|
||||||
|
|
||||||
def substepDimsplit(self, dt, substep):
|
def substepDimsplit(self, dt, substep):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
|
File diff suppressed because one or more lines are too long
Loading…
x
Reference in New Issue
Block a user