mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-11-29 17:28:03 +01:00
Running multiple CUDA contexts per process/thread
This commit is contained in:
358
GPUSimulators/SHMEMSimulator.py
Normal file
358
GPUSimulators/SHMEMSimulator.py
Normal file
@@ -0,0 +1,358 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
This python module implements SHMEM simulator class
|
||||
|
||||
Copyright (C) 2020 Norwegian Meteorological Institute
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
|
||||
import logging
|
||||
from GPUSimulators import Simulator, CudaContext
|
||||
import numpy as np
|
||||
|
||||
import pycuda.driver as cuda
|
||||
|
||||
class SHMEMGrid(object):
|
||||
"""
|
||||
Class which represents an SHMEM grid of GPUs. Facilitates easy communication between
|
||||
neighboring subdomains in the grid. Contains one CUDA context per subdomain.
|
||||
"""
|
||||
def __init__(self, ngpus=None, ndims=2):
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
cuda.init(flags=0)
|
||||
self.logger.info("Initializing CUDA")
|
||||
num_cuda_devices = cuda.Device.count()
|
||||
|
||||
if ngpus is None:
|
||||
ngpus = num_cuda_devices
|
||||
|
||||
assert ngpus <= num_cuda_devices, "Trying to allocate more GPUs than are available in the system."
|
||||
assert ndims == 2, "Unsupported number of dimensions. Must be two at the moment"
|
||||
assert ngpus >= 2, "Must have at least two GPUs available to run multi-GPU simulations."
|
||||
|
||||
self.ngpus = ngpus
|
||||
self.ndims = ndims
|
||||
|
||||
self.grid = SHMEMGrid.getGrid(self.ngpus, self.ndims)
|
||||
|
||||
self.logger.debug("Created {:}-dimensional SHMEM grid, using {:} GPUs".format(
|
||||
self.ndims, self.ngpus))
|
||||
|
||||
self.cuda_contexts = []
|
||||
|
||||
for i in range(self.ngpus):
|
||||
self.cuda_contexts.append(CudaContext.CudaContext(device=i, autotuning=False))
|
||||
|
||||
def getCoordinate(self, index):
|
||||
i = (index % self.grid[0])
|
||||
j = (index // self.grid[0])
|
||||
return i, j
|
||||
|
||||
def getIndex(self, i, j):
|
||||
return j*self.grid[0] + i
|
||||
|
||||
def getEast(self, index):
|
||||
i, j = self.getCoordinate(index)
|
||||
i = (i+1) % self.grid[0]
|
||||
return self.getIndex(i, j)
|
||||
|
||||
def getWest(self, index):
|
||||
i, j = self.getCoordinate(index)
|
||||
i = (i+self.grid[0]-1) % self.grid[0]
|
||||
return self.getIndex(i, j)
|
||||
|
||||
def getNorth(self, index):
|
||||
i, j = self.getCoordinate(index)
|
||||
j = (j+1) % self.grid[1]
|
||||
return self.getIndex(i, j)
|
||||
|
||||
def getSouth(self, index):
|
||||
i, j = self.getCoordinate(index)
|
||||
j = (j+self.grid[1]-1) % self.grid[1]
|
||||
return self.getIndex(i, j)
|
||||
|
||||
def getGrid(num_gpus, num_dims):
|
||||
assert(isinstance(num_gpus, int))
|
||||
assert(isinstance(num_dims, int))
|
||||
|
||||
# Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors
|
||||
# Original code by https://stackoverflow.com/users/3928385/ishamael
|
||||
# Factorizes a number into n roughly equal factors
|
||||
|
||||
#Dictionary to remember already computed permutations
|
||||
memo = {}
|
||||
def dp(n, left): # returns tuple (cost, [factors])
|
||||
"""
|
||||
Recursively searches through all factorizations
|
||||
"""
|
||||
|
||||
#Already tried: return existing result
|
||||
if (n, left) in memo:
|
||||
return memo[(n, left)]
|
||||
|
||||
#Spent all factors: return number itself
|
||||
if left == 1:
|
||||
return (n, [n])
|
||||
|
||||
#Find new factor
|
||||
i = 2
|
||||
best = n
|
||||
bestTuple = [n]
|
||||
while i * i < n:
|
||||
#If factor found
|
||||
if n % i == 0:
|
||||
#Factorize remainder
|
||||
rem = dp(n // i, left - 1)
|
||||
|
||||
#If new permutation better, save it
|
||||
if rem[0] + i < best:
|
||||
best = rem[0] + i
|
||||
bestTuple = [i] + rem[1]
|
||||
i += 1
|
||||
|
||||
#Store calculation
|
||||
memo[(n, left)] = (best, bestTuple)
|
||||
return memo[(n, left)]
|
||||
|
||||
|
||||
grid = dp(num_gpus, num_dims)[1]
|
||||
|
||||
if (len(grid) < num_dims):
|
||||
#Split problematic 4
|
||||
if (4 in grid):
|
||||
grid.remove(4)
|
||||
grid.append(2)
|
||||
grid.append(2)
|
||||
|
||||
#Pad with ones to guarantee num_dims
|
||||
grid = grid + [1]*(num_dims - len(grid))
|
||||
|
||||
#Sort in descending order
|
||||
grid = np.sort(grid)
|
||||
grid = grid[::-1]
|
||||
|
||||
return grid
|
||||
|
||||
|
||||
class SHMEMSimulator(Simulator.BaseSimulator):
|
||||
"""
|
||||
Class which handles communication between simulators on different GPUs
|
||||
"""
|
||||
def __init__(self, sim, grid):
|
||||
self.logger = logging.getLogger(__name__)
|
||||
|
||||
autotuner = sim.context.autotuner
|
||||
sim.context.autotuner = None;
|
||||
boundary_conditions = sim.getBoundaryConditions()
|
||||
super().__init__(sim.context,
|
||||
sim.nx, sim.ny,
|
||||
sim.dx, sim.dy,
|
||||
boundary_conditions,
|
||||
sim.cfl_scale,
|
||||
sim.num_substeps,
|
||||
sim.block_size[0], sim.block_size[1])
|
||||
sim.context.autotuner = autotuner
|
||||
|
||||
self.sim = sim
|
||||
self.grid = grid
|
||||
|
||||
#Get neighbor subdomain ids
|
||||
self.east = grid.getEast()
|
||||
self.west = grid.getWest()
|
||||
self.north = grid.getNorth()
|
||||
self.south = grid.getSouth()
|
||||
|
||||
#Get coordinate of this subdomain
|
||||
#and handle global boundary conditions
|
||||
new_boundary_conditions = Simulator.BoundaryCondition({
|
||||
'north': Simulator.BoundaryCondition.Type.Dirichlet,
|
||||
'south': Simulator.BoundaryCondition.Type.Dirichlet,
|
||||
'east': Simulator.BoundaryCondition.Type.Dirichlet,
|
||||
'west': Simulator.BoundaryCondition.Type.Dirichlet
|
||||
})
|
||||
gi, gj = grid.getCoordinate()
|
||||
if (gi == 0 and boundary_conditions.west != Simulator.BoundaryCondition.Type.Periodic):
|
||||
self.west = None
|
||||
new_boundary_conditions.west = boundary_conditions.west;
|
||||
if (gj == 0 and boundary_conditions.south != Simulator.BoundaryCondition.Type.Periodic):
|
||||
self.south = None
|
||||
new_boundary_conditions.south = boundary_conditions.south;
|
||||
if (gi == grid.grid[0]-1 and boundary_conditions.east != Simulator.BoundaryCondition.Type.Periodic):
|
||||
self.east = None
|
||||
new_boundary_conditions.east = boundary_conditions.east;
|
||||
if (gj == grid.grid[1]-1 and boundary_conditions.north != Simulator.BoundaryCondition.Type.Periodic):
|
||||
self.north = None
|
||||
new_boundary_conditions.north = boundary_conditions.north;
|
||||
sim.setBoundaryConditions(new_boundary_conditions)
|
||||
|
||||
#Get number of variables
|
||||
self.nvars = len(self.getOutput().gpu_variables)
|
||||
|
||||
#Shorthands for computing extents and sizes
|
||||
gc_x = int(self.sim.getOutput()[0].x_halo)
|
||||
gc_y = int(self.sim.getOutput()[0].y_halo)
|
||||
nx = int(self.sim.nx)
|
||||
ny = int(self.sim.ny)
|
||||
|
||||
#Set regions for ghost cells to read from
|
||||
#These have the format [x0, y0, width, height]
|
||||
self.read_e = np.array([ nx, 0, gc_x, ny + 2*gc_y])
|
||||
self.read_w = np.array([gc_x, 0, gc_x, ny + 2*gc_y])
|
||||
self.read_n = np.array([gc_x, ny, nx, gc_y])
|
||||
self.read_s = np.array([gc_x, gc_y, nx, gc_y])
|
||||
|
||||
#Set regions for ghost cells to write to
|
||||
self.write_e = self.read_e + np.array([gc_x, 0, 0, 0])
|
||||
self.write_w = self.read_w - np.array([gc_x, 0, 0, 0])
|
||||
self.write_n = self.read_n + np.array([0, gc_y, 0, 0])
|
||||
self.write_s = self.read_s - np.array([0, gc_y, 0, 0])
|
||||
|
||||
#Allocate data for receiving
|
||||
#Note that east and west also transfer ghost cells
|
||||
#whilst north/south only transfer internal cells
|
||||
#Reuses the width/height defined in the read-extets above
|
||||
self.in_e = np.empty((self.nvars, self.read_e[3], self.read_e[2]), dtype=np.float32)
|
||||
self.in_w = np.empty((self.nvars, self.read_w[3], self.read_w[2]), dtype=np.float32)
|
||||
self.in_n = np.empty((self.nvars, self.read_n[3], self.read_n[2]), dtype=np.float32)
|
||||
self.in_s = np.empty((self.nvars, self.read_s[3], self.read_s[2]), dtype=np.float32)
|
||||
|
||||
#Allocate data for sending
|
||||
self.out_e = np.empty_like(self.in_e)
|
||||
self.out_w = np.empty_like(self.in_w)
|
||||
self.out_n = np.empty_like(self.in_n)
|
||||
self.out_s = np.empty_like(self.in_s)
|
||||
|
||||
self.logger.debug("Simlator subdomain {:d} initialized on {:s}".format(self.grid.comm.rank, MPI.Get_processor_name()))
|
||||
|
||||
|
||||
def substep(self, dt, step_number):
|
||||
self.exchange()
|
||||
self.sim.substep(dt, step_number)
|
||||
|
||||
def getOutput(self):
|
||||
return self.sim.getOutput()
|
||||
|
||||
def synchronize(self):
|
||||
self.sim.synchronize()
|
||||
|
||||
def check(self):
|
||||
return self.sim.check()
|
||||
|
||||
def computeDt(self):
|
||||
local_dt = np.array([np.float32(self.sim.computeDt())]);
|
||||
global_dt = np.empty(1, dtype=np.float32)
|
||||
self.grid.comm.Allreduce(local_dt, global_dt, op=MPI.MIN)
|
||||
self.logger.debug("Local dt: {:f}, global dt: {:f}".format(local_dt[0], global_dt[0]))
|
||||
return global_dt[0]
|
||||
|
||||
|
||||
def getExtent(self):
|
||||
"""
|
||||
Function which returns the extent of node with rank
|
||||
rank in the grid
|
||||
"""
|
||||
width = self.sim.nx*self.sim.dx
|
||||
height = self.sim.ny*self.sim.dy
|
||||
i, j = self.grid.getCoordinate()
|
||||
x0 = i * width
|
||||
y0 = j * height
|
||||
x1 = x0 + width
|
||||
y1 = y0 + height
|
||||
return [x0, x1, y0, y1]
|
||||
|
||||
def exchange(self):
|
||||
####
|
||||
# First transfer internal cells north-south
|
||||
####
|
||||
|
||||
#Download from the GPU
|
||||
if self.north is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_n[k,:,:], asynch=True, extent=self.read_n)
|
||||
if self.south is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_s[k,:,:], asynch=True, extent=self.read_s)
|
||||
self.sim.stream.synchronize()
|
||||
|
||||
#Send/receive to north/south neighbours
|
||||
comm_send = []
|
||||
comm_recv = []
|
||||
if self.north is not None:
|
||||
comm_send += [self.grid.comm.Isend(self.out_n, dest=self.north, tag=4*self.nt + 0)]
|
||||
comm_recv += [self.grid.comm.Irecv(self.in_n, source=self.north, tag=4*self.nt + 1)]
|
||||
if self.south is not None:
|
||||
comm_send += [self.grid.comm.Isend(self.out_s, dest=self.south, tag=4*self.nt + 1)]
|
||||
comm_recv += [self.grid.comm.Irecv(self.in_s, source=self.south, tag=4*self.nt + 0)]
|
||||
|
||||
#Wait for incoming transfers to complete
|
||||
for comm in comm_recv:
|
||||
comm.wait()
|
||||
|
||||
#Upload to the GPU
|
||||
if self.north is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].upload(self.sim.stream, self.in_n[k,:,:], extent=self.write_n)
|
||||
if self.south is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].upload(self.sim.stream, self.in_s[k,:,:], extent=self.write_s)
|
||||
|
||||
#Wait for sending to complete
|
||||
for comm in comm_send:
|
||||
comm.wait()
|
||||
|
||||
|
||||
|
||||
####
|
||||
# Then transfer east-west including ghost cells that have been filled in by north-south transfer above
|
||||
####
|
||||
|
||||
#Download from the GPU
|
||||
if self.east is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_e[k,:,:], asynch=True, extent=self.read_e)
|
||||
if self.west is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_w[k,:,:], asynch=True, extent=self.read_w)
|
||||
self.sim.stream.synchronize()
|
||||
|
||||
#Send/receive to east/west neighbours
|
||||
comm_send = []
|
||||
comm_recv = []
|
||||
if self.east is not None:
|
||||
comm_send += [self.grid.comm.Isend(self.out_e, dest=self.east, tag=4*self.nt + 2)]
|
||||
comm_recv += [self.grid.comm.Irecv(self.in_e, source=self.east, tag=4*self.nt + 3)]
|
||||
if self.west is not None:
|
||||
comm_send += [self.grid.comm.Isend(self.out_w, dest=self.west, tag=4*self.nt + 3)]
|
||||
comm_recv += [self.grid.comm.Irecv(self.in_w, source=self.west, tag=4*self.nt + 2)]
|
||||
|
||||
|
||||
#Wait for incoming transfers to complete
|
||||
for comm in comm_recv:
|
||||
comm.wait()
|
||||
|
||||
#Upload to the GPU
|
||||
if self.east is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].upload(self.sim.stream, self.in_e[k,:,:], extent=self.write_e)
|
||||
if self.west is not None:
|
||||
for k in range(self.nvars):
|
||||
self.sim.u0[k].upload(self.sim.stream, self.in_w[k,:,:], extent=self.write_w)
|
||||
|
||||
#Wait for sending to complete
|
||||
for comm in comm_send:
|
||||
comm.wait()
|
||||
@@ -1,7 +1,7 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
This python module implements Cuda context handling
|
||||
This python module implements visualization techniques/modes
|
||||
|
||||
Copyright (C) 2018 SINTEF ICT
|
||||
|
||||
|
||||
Reference in New Issue
Block a user