mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 14:34:13 +02:00
Removed fixed timestep size
This commit is contained in:
parent
ddac53271c
commit
815b4493b5
@ -58,7 +58,7 @@ class EE2D_KP07_dimsplit (BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
rho, rho_u, rho_v, E,
|
rho, rho_u, rho_v, E,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
gamma,
|
gamma,
|
||||||
theta=1.3,
|
theta=1.3,
|
||||||
@ -67,14 +67,14 @@ class EE2D_KP07_dimsplit (BaseSimulator):
|
|||||||
block_width=16, block_height=8):
|
block_width=16, block_height=8):
|
||||||
|
|
||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context, \
|
super().__init__(context,
|
||||||
nx, ny, \
|
nx, ny,
|
||||||
dx, dy, 2*dt, \
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height)
|
block_width, block_height)
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.gamma = np.float32(gamma)
|
self.gamma = np.float32(gamma)
|
||||||
self.theta = np.float32(theta)
|
self.theta = np.float32(theta)
|
||||||
self.cfl_scale = cfl_scale
|
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
|
|
||||||
#Get kernels
|
#Get kernels
|
||||||
@ -102,7 +102,10 @@ class EE2D_KP07_dimsplit (BaseSimulator):
|
|||||||
2, 2,
|
2, 2,
|
||||||
[None, None, None, None])
|
[None, None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(gamma*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(gamma*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
@ -140,4 +143,4 @@ class EE2D_KP07_dimsplit (BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5*self.cfl_scale
|
return max_dt*0.5
|
@ -57,7 +57,7 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
h0, hu0, hv0,
|
h0, hu0, hv0,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
cfl_scale=0.9,
|
cfl_scale=0.9,
|
||||||
boundary_conditions=BoundaryCondition(),
|
boundary_conditions=BoundaryCondition(),
|
||||||
@ -66,10 +66,10 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context,
|
super().__init__(context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height)
|
block_width, block_height)
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.cfl_scale = cfl_scale
|
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
|
|
||||||
#Get kernels
|
#Get kernels
|
||||||
@ -96,7 +96,10 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
1, 1,
|
1, 1,
|
||||||
[None, None, None])
|
[None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
@ -124,4 +127,4 @@ class FORCE (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5*self.cfl_scale
|
return max_dt*0.5
|
@ -52,7 +52,7 @@ class HLL (Simulator.BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
h0, hu0, hv0,
|
h0, hu0, hv0,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
cfl_scale=0.9,
|
cfl_scale=0.9,
|
||||||
boundary_conditions=BoundaryCondition(),
|
boundary_conditions=BoundaryCondition(),
|
||||||
@ -61,10 +61,10 @@ class HLL (Simulator.BaseSimulator):
|
|||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context,
|
super().__init__(context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.cfl_scale = cfl_scale
|
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
|
|
||||||
#Get kernels
|
#Get kernels
|
||||||
@ -91,7 +91,10 @@ class HLL (Simulator.BaseSimulator):
|
|||||||
1, 1,
|
1, 1,
|
||||||
[None, None, None])
|
[None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
@ -119,4 +122,4 @@ class HLL (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5*self.cfl_scale
|
return max_dt*0.5
|
@ -54,7 +54,7 @@ class HLL2 (Simulator.BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
h0, hu0, hv0,
|
h0, hu0, hv0,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
theta=1.8,
|
theta=1.8,
|
||||||
cfl_scale=0.9,
|
cfl_scale=0.9,
|
||||||
@ -64,7 +64,8 @@ class HLL2 (Simulator.BaseSimulator):
|
|||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context,
|
super().__init__(context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt*2,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.theta = np.float32(theta)
|
self.theta = np.float32(theta)
|
||||||
@ -95,7 +96,10 @@ class HLL2 (Simulator.BaseSimulator):
|
|||||||
2, 2,
|
2, 2,
|
||||||
[None, None, None])
|
[None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
self.substepDimsplit(dt*0.5, 0)
|
self.substepDimsplit(dt*0.5, 0)
|
||||||
@ -130,4 +134,4 @@ class HLL2 (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5*self.cfl_scale
|
return max_dt*0.5
|
@ -55,7 +55,7 @@ class KP07 (Simulator.BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
h0, hu0, hv0,
|
h0, hu0, hv0,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
theta=1.3,
|
theta=1.3,
|
||||||
cfl_scale=0.9,
|
cfl_scale=0.9,
|
||||||
@ -66,11 +66,11 @@ class KP07 (Simulator.BaseSimulator):
|
|||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context,
|
super().__init__(context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.theta = np.float32(theta)
|
self.theta = np.float32(theta)
|
||||||
self.cfl_scale = cfl_scale
|
|
||||||
self.order = np.int32(order)
|
self.order = np.int32(order)
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
|
|
||||||
@ -98,7 +98,10 @@ class KP07 (Simulator.BaseSimulator):
|
|||||||
2, 2,
|
2, 2,
|
||||||
[None, None, None])
|
[None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
@ -140,4 +143,4 @@ class KP07 (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5**self.order*self.cfl_scale
|
return max_dt*0.5**self.order
|
@ -38,7 +38,7 @@ from pycuda import gpuarray
|
|||||||
"""
|
"""
|
||||||
Class that solves the SW equations using the dimentionally split KP07 scheme
|
Class that solves the SW equations using the dimentionally split KP07 scheme
|
||||||
"""
|
"""
|
||||||
class KP07_dimsplit (Simulator.BaseSimulator):
|
class KP07_dimsplit(Simulator.BaseSimulator):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Initialization routine
|
Initialization routine
|
||||||
@ -56,7 +56,7 @@ class KP07_dimsplit (Simulator.BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
h0, hu0, hv0,
|
h0, hu0, hv0,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
theta=1.3,
|
theta=1.3,
|
||||||
cfl_scale=0.9,
|
cfl_scale=0.9,
|
||||||
@ -66,13 +66,13 @@ class KP07_dimsplit (Simulator.BaseSimulator):
|
|||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context,
|
super().__init__(context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt*2,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height)
|
block_width, block_height)
|
||||||
self.gc_x = 2
|
self.gc_x = 2
|
||||||
self.gc_y = 2
|
self.gc_y = 2
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.theta = np.float32(theta)
|
self.theta = np.float32(theta)
|
||||||
self.cfl_scale = cfl_scale
|
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
|
|
||||||
#Get kernels
|
#Get kernels
|
||||||
@ -99,7 +99,10 @@ class KP07_dimsplit (Simulator.BaseSimulator):
|
|||||||
self.gc_x, self.gc_y,
|
self.gc_x, self.gc_y,
|
||||||
[None, None, None])
|
[None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
self.substepDimsplit(dt*0.5, 0)
|
self.substepDimsplit(dt*0.5, 0)
|
||||||
@ -135,4 +138,4 @@ class KP07_dimsplit (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5*self.cfl_scale
|
return max_dt*0.5
|
@ -53,7 +53,7 @@ class LxF (Simulator.BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
h0, hu0, hv0,
|
h0, hu0, hv0,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
cfl_scale=0.9,
|
cfl_scale=0.9,
|
||||||
boundary_conditions=BoundaryCondition(),
|
boundary_conditions=BoundaryCondition(),
|
||||||
@ -62,10 +62,10 @@ class LxF (Simulator.BaseSimulator):
|
|||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context,
|
super().__init__(context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.cfl_scale = cfl_scale
|
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
|
|
||||||
# Get kernels
|
# Get kernels
|
||||||
@ -92,7 +92,10 @@ class LxF (Simulator.BaseSimulator):
|
|||||||
1, 1,
|
1, 1,
|
||||||
[None, None, None])
|
[None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
|
||||||
@ -116,4 +119,4 @@ class LxF (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5*self.cfl_scale
|
return max_dt*0.5
|
@ -104,7 +104,8 @@ class BaseSimulator(object):
|
|||||||
def __init__(self,
|
def __init__(self,
|
||||||
context,
|
context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height):
|
block_width, block_height):
|
||||||
"""
|
"""
|
||||||
Initialization routine
|
Initialization routine
|
||||||
@ -130,7 +131,7 @@ class BaseSimulator(object):
|
|||||||
self.ny = np.int32(ny)
|
self.ny = np.int32(ny)
|
||||||
self.dx = np.float32(dx)
|
self.dx = np.float32(dx)
|
||||||
self.dy = np.float32(dy)
|
self.dy = np.float32(dy)
|
||||||
self.dt = np.float32(dt)
|
self.cfl_scale = cfl_scale
|
||||||
|
|
||||||
#Handle autotuning block size
|
#Handle autotuning block size
|
||||||
if (self.context.autotuner):
|
if (self.context.autotuner):
|
||||||
@ -168,20 +169,22 @@ class BaseSimulator(object):
|
|||||||
|
|
||||||
t_end = self.simTime() + t
|
t_end = self.simTime() + t
|
||||||
|
|
||||||
|
dt = None
|
||||||
|
|
||||||
while(self.simTime() < t_end):
|
while(self.simTime() < t_end):
|
||||||
if (self.simSteps() % 100 == 0):
|
if (self.simSteps() % 100 == 0):
|
||||||
self.dt = self.computeDt()
|
dt = self.computeDt()*self.cfl_scale
|
||||||
|
|
||||||
# Compute timestep for "this" iteration (i.e., shorten last timestep)
|
# Compute timestep for "this" iteration (i.e., shorten last timestep)
|
||||||
local_dt = np.float32(min(self.dt, t_end-self.simTime()))
|
dt = np.float32(min(dt, t_end-self.simTime()))
|
||||||
|
|
||||||
# Stop if end reached (should not happen)
|
# Stop if end reached (should not happen)
|
||||||
if (local_dt <= 0.0):
|
if (dt <= 0.0):
|
||||||
self.logger.warning("Timestep size {:d} is less than or equal to zero!".format(self.simSteps()))
|
self.logger.warning("Timestep size {:d} is less than or equal to zero!".format(self.simSteps()))
|
||||||
break
|
break
|
||||||
|
|
||||||
# Step forward in time
|
# Step forward in time
|
||||||
self.step(local_dt)
|
self.step(dt)
|
||||||
|
|
||||||
#Print info
|
#Print info
|
||||||
print_string = printer.getPrintString(t_end - self.simTime())
|
print_string = printer.getPrintString(t_end - self.simTime())
|
||||||
|
@ -51,7 +51,7 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
context,
|
context,
|
||||||
h0, hu0, hv0,
|
h0, hu0, hv0,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt,
|
dx, dy,
|
||||||
g,
|
g,
|
||||||
cfl_scale=0.9,
|
cfl_scale=0.9,
|
||||||
boundary_conditions=BoundaryCondition(),
|
boundary_conditions=BoundaryCondition(),
|
||||||
@ -60,10 +60,10 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
# Call super constructor
|
# Call super constructor
|
||||||
super().__init__(context,
|
super().__init__(context,
|
||||||
nx, ny,
|
nx, ny,
|
||||||
dx, dy, dt*2,
|
dx, dy,
|
||||||
|
cfl_scale,
|
||||||
block_width, block_height);
|
block_width, block_height);
|
||||||
self.g = np.float32(g)
|
self.g = np.float32(g)
|
||||||
self.cfl_scale = cfl_scale
|
|
||||||
self.boundary_conditions = boundary_conditions.asCodedInt()
|
self.boundary_conditions = boundary_conditions.asCodedInt()
|
||||||
|
|
||||||
#Get kernels
|
#Get kernels
|
||||||
@ -78,7 +78,7 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
},
|
},
|
||||||
jit_compile_args={})
|
jit_compile_args={})
|
||||||
self.kernel = module.get_function("WAFKernel")
|
self.kernel = module.get_function("WAFKernel")
|
||||||
self.kernel.prepare("iiffffiiPiPiPiPiPiPi")
|
self.kernel.prepare("iiffffiiPiPiPiPiPiPiP")
|
||||||
|
|
||||||
#Create data by uploading to device
|
#Create data by uploading to device
|
||||||
self.u0 = Common.ArakawaA2D(self.stream,
|
self.u0 = Common.ArakawaA2D(self.stream,
|
||||||
@ -90,7 +90,10 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
2, 2,
|
2, 2,
|
||||||
[None, None, None])
|
[None, None, None])
|
||||||
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
|
||||||
self.cfl_data.fill(self.dt, stream=self.stream)
|
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
|
||||||
|
dt = min(dt_x, dt_y)
|
||||||
|
self.cfl_data.fill(dt, stream=self.stream)
|
||||||
|
|
||||||
def step(self, dt):
|
def step(self, dt):
|
||||||
self.substepDimsplit(dt*0.5, substep=0)
|
self.substepDimsplit(dt*0.5, substep=0)
|
||||||
@ -110,7 +113,8 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
|
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
|
||||||
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
|
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
|
||||||
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
|
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
|
||||||
self.u1[2].data.gpudata, self.u1[2].data.strides[0])
|
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
|
||||||
|
self.cfl_data.gpudata)
|
||||||
self.u0, self.u1 = self.u1, self.u0
|
self.u0, self.u1 = self.u1, self.u0
|
||||||
|
|
||||||
def download(self):
|
def download(self):
|
||||||
@ -122,4 +126,4 @@ class WAF (Simulator.BaseSimulator):
|
|||||||
|
|
||||||
def computeDt(self):
|
def computeDt(self):
|
||||||
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
|
||||||
return max_dt*0.5*self.cfl_scale
|
return max_dt*0.5
|
Loading…
x
Reference in New Issue
Block a user