mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2026-01-14 15:48:43 +01:00
Working prototype of autotuning
This commit is contained in:
197
GPUSimulators/Simulator.py
Normal file
197
GPUSimulators/Simulator.py
Normal file
@@ -0,0 +1,197 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
This python module implements the classical Lax-Friedrichs numerical
|
||||
scheme for the shallow water equations
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
#Import packages we need
|
||||
import numpy as np
|
||||
import logging
|
||||
|
||||
import pycuda.compiler as cuda_compiler
|
||||
import pycuda.gpuarray
|
||||
import pycuda.driver as cuda
|
||||
|
||||
from GPUSimulators import Common
|
||||
|
||||
|
||||
class BaseSimulator:
|
||||
"""
|
||||
Initialization routine
|
||||
context: GPU context to use
|
||||
kernel_wrapper: wrapper function of GPU kernel
|
||||
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
|
||||
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
|
||||
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
|
||||
nx: Number of cells along x-axis
|
||||
ny: Number of cells along y-axis
|
||||
dx: Grid cell spacing along x-axis (20 000 m)
|
||||
dy: Grid cell spacing along y-axis (20 000 m)
|
||||
dt: Size of each timestep (90 s)
|
||||
g: Gravitational accelleration (9.81 m/s^2)
|
||||
"""
|
||||
def __init__(self, \
|
||||
context, \
|
||||
h0, hu0, hv0, \
|
||||
nx, ny, \
|
||||
ghost_cells_x, ghost_cells_y, \
|
||||
dx, dy, dt, \
|
||||
g, \
|
||||
block_width, block_height):
|
||||
#Get logger
|
||||
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
|
||||
|
||||
self.context = context
|
||||
|
||||
if (self.context.autotuner):
|
||||
peak_configuration = self.context.autotuner.get_peak_performance(self.__class__)
|
||||
block_width = int(peak_configuration["block_width"])
|
||||
block_height = int(peak_configuration["block_height"])
|
||||
self.logger.debug("Used autotuning to get block size [%d x %d]", block_width, block_height)
|
||||
|
||||
#Create a CUDA stream
|
||||
self.stream = cuda.Stream()
|
||||
|
||||
#Create data by uploading to device
|
||||
self.data = Common.SWEDataArakawaA(self.stream, \
|
||||
nx, ny, \
|
||||
ghost_cells_x, ghost_cells_y, \
|
||||
h0, hu0, hv0)
|
||||
|
||||
#Save input parameters
|
||||
#Notice that we need to specify them in the correct dataformat for the
|
||||
#GPU kernel
|
||||
self.nx = np.int32(nx)
|
||||
self.ny = np.int32(ny)
|
||||
self.dx = np.float32(dx)
|
||||
self.dy = np.float32(dy)
|
||||
self.dt = np.float32(dt)
|
||||
self.g = np.float32(g)
|
||||
|
||||
#Keep track of simulation time
|
||||
self.t = 0.0;
|
||||
|
||||
#Compute kernel launch parameters
|
||||
self.local_size = (block_width, block_height, 1)
|
||||
self.global_size = ( \
|
||||
int(np.ceil(self.nx / float(self.local_size[0]))), \
|
||||
int(np.ceil(self.ny / float(self.local_size[1]))) \
|
||||
)
|
||||
|
||||
"""
|
||||
Function which simulates forward in time using the default simulation type
|
||||
"""
|
||||
def simulate(self, t_end):
|
||||
raise(exceptions.NotImplementedError("Needs to be implemented in subclass"))
|
||||
|
||||
"""
|
||||
Function which simulates t_end seconds using forward Euler
|
||||
Requires that the stepEuler functionality is implemented in the subclasses
|
||||
"""
|
||||
def simulateEuler(self, t_end):
|
||||
with Common.Timer(self.__class__.__name__ + ".simulateEuler") as t:
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / self.dt + 1)
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Step with forward Euler
|
||||
self.stepEuler(local_dt)
|
||||
|
||||
self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, n, t.secs)
|
||||
return self.t, n
|
||||
|
||||
"""
|
||||
Function which simulates t_end seconds using Runge-Kutta 2
|
||||
Requires that the stepRK functionality is implemented in the subclasses
|
||||
"""
|
||||
def simulateRK(self, t_end, order):
|
||||
with Common.Timer(self.__class__.__name__ + ".simulateRK") as t:
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / self.dt + 1)
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Perform all the Runge-Kutta substeps
|
||||
self.stepRK(local_dt, order)
|
||||
|
||||
self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, n, t.secs)
|
||||
return self.t, n
|
||||
|
||||
"""
|
||||
Function which simulates t_end seconds using second order dimensional splitting (XYYX)
|
||||
Requires that the stepDimsplitX and stepDimsplitY functionality is implemented in the subclasses
|
||||
"""
|
||||
def simulateDimsplit(self, t_end):
|
||||
with Common.Timer(self.__class__.__name__ + ".simulateDimsplit") as t:
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / (2.0*self.dt) + 1)
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Perform the dimensional split substeps
|
||||
self.stepDimsplitXY(local_dt)
|
||||
self.stepDimsplitYX(local_dt)
|
||||
|
||||
self.logger.info("%s simulated %f seconds to %f with %d steps in %f seconds", self.__class__.__name__, t_end, self.t, 2*n, t.secs)
|
||||
return self.t, 2*n
|
||||
|
||||
|
||||
"""
|
||||
Function which performs one single timestep of size dt using forward euler
|
||||
"""
|
||||
def stepEuler(self, dt):
|
||||
raise(NotImplementedError("Needs to be implemented in subclass"))
|
||||
|
||||
def stepRK(self, dt, substep):
|
||||
raise(NotImplementedError("Needs to be implemented in subclass"))
|
||||
|
||||
def stepDimsplitXY(self, dt):
|
||||
raise(NotImplementedError("Needs to be implemented in subclass"))
|
||||
|
||||
def stepDimsplitYX(self, dt):
|
||||
raise(NotImplementedError("Needs to be implemented in subclass"))
|
||||
|
||||
def sim_time(self):
|
||||
return self.t
|
||||
|
||||
def download(self):
|
||||
return self.data.download(self.stream)
|
||||
|
||||
def synchronize(self):
|
||||
self.stream.synchronize()
|
||||
|
||||
Reference in New Issue
Block a user