mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2026-01-14 15:48:43 +01:00
Refactoring
This commit is contained in:
220
GPUSimulators/cuda/SWE2D_WAF.cu
Normal file
220
GPUSimulators/cuda/SWE2D_WAF.cu
Normal file
@@ -0,0 +1,220 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
int j=ty;
|
||||
const int l = j + 2; //Skip ghost cells
|
||||
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
const int k = i + 1;
|
||||
|
||||
// Q at interface from the right and left
|
||||
const float3 Ql2 = make_float3(Q[0][l][k-1], Q[1][l][k-1], Q[2][l][k-1]);
|
||||
const float3 Ql1 = make_float3(Q[0][l][k ], Q[1][l][k ], Q[2][l][k ]);
|
||||
const float3 Qr1 = make_float3(Q[0][l][k+1], Q[1][l][k+1], Q[2][l][k+1]);
|
||||
const float3 Qr2 = make_float3(Q[0][l][k+2], Q[1][l][k+2], Q[2][l][k+2]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dx_, dt_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
//Compute fluxes along the y axis
|
||||
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
const int l = j + 1;
|
||||
{
|
||||
int i=tx;
|
||||
const int k = i + 2; //Skip ghost cells
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Ql2 = make_float3(Q[0][l-1][k], Q[2][l-1][k], Q[1][l-1][k]);
|
||||
const float3 Ql1 = make_float3(Q[0][l ][k], Q[2][l ][k], Q[1][l ][k]);
|
||||
const float3 Qr1 = make_float3(Q[0][l+1][k], Q[2][l+1][k], Q[1][l+1][k]);
|
||||
const float3 Qr2 = make_float3(Q[0][l+2][k], Q[2][l+2][k], Q[1][l+2][k]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dy_, dt_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__ void WAFKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_, int step_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory Q from global memory
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
evolveF<w, h, gc>(Q[0], F[0], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[1], F[1], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[2], F[2], dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
evolveG<w, h, gc>(Q[0], F[0], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[1], F[1], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[2], F[2], dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
evolveG<w, h, gc>(Q[0], F[0], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[1], F[1], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[2], F[2], dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
evolveF<w, h, gc>(Q[0], F[0], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[1], F[1], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[2], F[2], dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, 2>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, 2>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
Reference in New Issue
Block a user