mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2026-01-14 15:48:43 +01:00
Refactoring
This commit is contained in:
246
GPUSimulators/cuda/SWE2D_KP07_dimsplit.cu
Normal file
246
GPUSimulators/cuda/SWE2D_KP07_dimsplit.cu
Normal file
@@ -0,0 +1,246 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
int j=ty;
|
||||
const int l = j + 2; //Skip ghost cells
|
||||
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
const int k = i + 1;
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float3 Q_rl = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rr = make_float3(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] - 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] - 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] + 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] + 0.5f*Qx[2][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
const int l = j + 1;
|
||||
{
|
||||
int i=tx;
|
||||
const int k = i + 2; //Skip ghost cells
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float3 Q_rl = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rr = make_float3(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] - 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] - 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] + 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] + 0.5f*Qy[1][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
__global__ void KP07DimsplitKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float Qx[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc>(Q[0], F[0], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[1], F[1], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[2], F[2], dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
evolveG<w, h, gc>(Q[0], F[0], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[1], F[1], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[2], F[2], dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
evolveG<w, h, gc>(Q[0], F[0], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[1], F[1], dy_, dt_);
|
||||
evolveG<w, h, gc>(Q[2], F[2], dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc>(Q[0], F[0], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[1], F[1], dx_, dt_);
|
||||
evolveF<w, h, gc>(Q[2], F[2], dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, gc>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
Reference in New Issue
Block a user