mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2026-01-14 15:48:43 +01:00
Refactoring
This commit is contained in:
215
GPUSimulators/cuda/SWE2D_KP07.cu
Normal file
215
GPUSimulators/cuda/SWE2D_KP07.cu
Normal file
@@ -0,0 +1,215 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
int j=ty;
|
||||
const int l = j + 2; //Skip ghost cells
|
||||
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
const int k = i + 1;
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Qm = make_float3(Q[0][l][k ] + 0.5f*Qx[0][j][i ],
|
||||
Q[1][l][k ] + 0.5f*Qx[1][j][i ],
|
||||
Q[2][l][k ] + 0.5f*Qx[2][j][i ]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
const int l = j + 1;
|
||||
{
|
||||
int i=tx;
|
||||
const int k = i + 2; //Skip ghost cells
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Qm = make_float3(Q[0][l ][k] + 0.5f*Qy[0][j ][i],
|
||||
Q[2][l ][k] + 0.5f*Qy[2][j ][i],
|
||||
Q[1][l ][k] + 0.5f*Qy[1][j ][i]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
__global__ void KP07Kernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
//Index of cell within domain
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 2; //Skip global ghost cells, i.e., +2
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
|
||||
//The following slightly wastes memory, but enables us to reuse the
|
||||
//funcitons in common.opencl
|
||||
__shared__ float Qx[3][h+2][w+2];
|
||||
__shared__ float Qy[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
__shared__ float G[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc>( h0_ptr_, h0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hu0_ptr_, hu0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(hv0_ptr_, hv0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Reconstruct slopes along x and axis
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
minmodSlopeY(Q, Qy, theta_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Compute fluxes along the x and y axis
|
||||
computeFluxF(Q, Qx, F, g_);
|
||||
computeFluxG(Q, Qy, G, g_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Sum fluxes and advance in time for all internal cells
|
||||
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
|
||||
const int i = tx + 2; //Skip local ghost cells, i.e., +2
|
||||
const int j = ty + 2;
|
||||
|
||||
const float h1 = Q[0][j][i] + (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
|
||||
const float hu1 = Q[1][j][i] + (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
|
||||
const float hv1 = Q[2][j][i] + (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
|
||||
|
||||
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
|
||||
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
|
||||
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
|
||||
|
||||
if (step_ == 0) {
|
||||
//First step of RK2 ODE integrator
|
||||
|
||||
h_row[ti] = h1;
|
||||
hu_row[ti] = hu1;
|
||||
hv_row[ti] = hv1;
|
||||
}
|
||||
else if (step_ == 1) {
|
||||
//Second step of RK2 ODE integrator
|
||||
|
||||
//First read Q^n
|
||||
const float h_a = h_row[ti];
|
||||
const float hu_a = hu_row[ti];
|
||||
const float hv_a = hv_row[ti];
|
||||
|
||||
//Compute Q^n+1
|
||||
const float h_b = 0.5f*(h_a + h1);
|
||||
const float hu_b = 0.5f*(hu_a + hu1);
|
||||
const float hv_b = 0.5f*(hv_a + hv1);
|
||||
|
||||
//Write to main memory
|
||||
h_row[ti] = h_b;
|
||||
hu_row[ti] = hu_b;
|
||||
hv_row[ti] = hv_b;
|
||||
}
|
||||
}
|
||||
}
|
||||
} //extern "C"
|
||||
Reference in New Issue
Block a user