mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2026-01-14 15:48:43 +01:00
Refactoring
This commit is contained in:
244
GPUSimulators/cuda/EE2D_KP07_dimsplit.cu
Normal file
244
GPUSimulators/cuda/EE2D_KP07_dimsplit.cu
Normal file
@@ -0,0 +1,244 @@
|
||||
/*
|
||||
This kernel implements the Central Upwind flux function to
|
||||
solve the Euler equations
|
||||
|
||||
Copyright (C) 2018 SINTEF Digital
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "EulerCommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
__device__
|
||||
void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[4][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[4][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float gamma_, const float dx_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
int j=ty;
|
||||
const int l = j + 2; //Skip ghost cells
|
||||
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
const int k = i + 1;
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float4 Q_rl = make_float4(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1],
|
||||
Q[4][l][k+1] - 0.5f*Qx[4][j][i+1]);
|
||||
const float4 Q_rr = make_float4(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1],
|
||||
Q[4][l][k+1] + 0.5f*Qx[4][j][i+1]);
|
||||
|
||||
const float4 Q_ll = make_float4(Q[0][l][k] - 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] - 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] - 0.5f*Qx[2][j][i],
|
||||
Q[4][l][k] - 0.5f*Qx[4][j][i]);
|
||||
const float4 Q_lr = make_float4(Q[0][l][k] + 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] + 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] + 0.5f*Qx[2][j][i],
|
||||
Q[4][l][k] + 0.5f*Qx[4][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
|
||||
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
F[3][j][i] = flux.w;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void computeFluxG(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[4][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[4][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float gamma_, const float dy_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
const int l = j + 1;
|
||||
{
|
||||
int i=tx;
|
||||
const int k = i + 2; //Skip ghost cells
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float4 Q_rl = make_float4(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i],
|
||||
Q[3][l+1][k] - 0.5f*Qy[3][j+1][i]);
|
||||
const float4 Q_rr = make_float4(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i],
|
||||
Q[3][l+1][k] + 0.5f*Qy[3][j+1][i]);
|
||||
|
||||
const float4 Q_ll = make_float4(Q[0][l][k] - 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] - 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] - 0.5f*Qy[1][j][i],
|
||||
Q[3][l][k] - 0.5f*Qy[3][j][i]);
|
||||
const float4 Q_lr = make_float4(Q[0][l][k] + 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] + 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] + 0.5f*Qy[1][j][i],
|
||||
Q[3][l][k] + 0.5f*Qy[3][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
|
||||
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float4 flux = make_float4(0.01, 0.01, 0.01, 0.01);//CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
G[3][j][i] = flux.w;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
__global__ void KP07DimsplitKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float gamma_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
|
||||
//Input h^n
|
||||
float* rho0_ptr_, int rho0_pitch_,
|
||||
float* rho_u0_ptr_, int rho_u0_pitch_,
|
||||
float* rho_v0_ptr_, int rho_v0_pitch_,
|
||||
float* E0_ptr_, int E0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* rho1_ptr_, int rho1_pitch_,
|
||||
float* rho_u1_ptr_, int rho_u1_pitch_,
|
||||
float* rho_v1_ptr_, int rho_v1_pitch_,
|
||||
float* E1_ptr_, int E1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc = 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[4][h+4][w+4];
|
||||
__shared__ float Qx[4][h+2][w+2];
|
||||
__shared__ float F[4][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc>( rho0_ptr_, rho0_pitch_, Q[0], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>(rho_v0_ptr_, rho_v0_pitch_, Q[2], nx_+2, ny_+2);
|
||||
readBlock<w, h, gc>( E0_ptr_, E0_pitch_, Q[3], nx_+2, ny_+2);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Fix boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF2(Q, F, nx_, ny_, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG2(Q, F, nx_, ny_, dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG2(Q, F, nx_, ny_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[0], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, -1, 1>(Q[1], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, -1>(Q[2], nx_, ny_);
|
||||
noFlowBoundary<w, h, gc, 1, 1>(Q[3], nx_, ny_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF2(Q, F, nx_, ny_, dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc>( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_);
|
||||
writeBlock<w, h, gc>(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_);
|
||||
writeBlock<w, h, gc>(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_);
|
||||
writeBlock<w, h, gc>( E1_ptr_, E1_pitch_, Q[3], nx_, ny_);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
Reference in New Issue
Block a user