mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2026-01-14 15:48:43 +01:00
Refactoring
This commit is contained in:
@@ -34,7 +34,6 @@ import pycuda.compiler as cuda_compiler
|
||||
import pycuda.gpuarray
|
||||
import pycuda.driver as cuda
|
||||
|
||||
from GPUSimulators import Autotuner
|
||||
|
||||
"""
|
||||
Class which keeps track of time spent for a section of code
|
||||
@@ -58,225 +57,6 @@ class Timer(object):
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
Class which keeps track of the CUDA context and some helper functions
|
||||
"""
|
||||
class CudaContext(object):
|
||||
|
||||
def __init__(self, blocking=False, use_cache=True, autotuning=True):
|
||||
self.blocking = blocking
|
||||
self.use_cache = use_cache
|
||||
self.logger = logging.getLogger(__name__)
|
||||
self.kernels = {}
|
||||
|
||||
self.module_path = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
#Initialize cuda (must be first call to PyCUDA)
|
||||
cuda.init(flags=0)
|
||||
|
||||
self.logger.info("PyCUDA version %s", str(pycuda.VERSION_TEXT))
|
||||
|
||||
#Print some info about CUDA
|
||||
self.logger.info("CUDA version %s", str(cuda.get_version()))
|
||||
self.logger.info("Driver version %s", str(cuda.get_driver_version()))
|
||||
|
||||
self.cuda_device = cuda.Device(0)
|
||||
self.logger.info("Using '%s' GPU", self.cuda_device.name())
|
||||
self.logger.debug(" => compute capability: %s", str(self.cuda_device.compute_capability()))
|
||||
|
||||
# Create the CUDA context
|
||||
if (self.blocking):
|
||||
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_BLOCKING_SYNC)
|
||||
self.logger.warning("Using blocking context")
|
||||
else:
|
||||
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_AUTO)
|
||||
|
||||
free, total = cuda.mem_get_info()
|
||||
self.logger.debug(" => memory: %d / %d MB available", int(free/(1024*1024)), int(total/(1024*1024)))
|
||||
|
||||
self.logger.info("Created context handle <%s>", str(self.cuda_context.handle))
|
||||
|
||||
#Create cache dir for cubin files
|
||||
if (self.use_cache):
|
||||
self.cache_path = os.path.join(self.module_path, "cuda_cache")
|
||||
if not os.path.isdir(self.cache_path):
|
||||
os.mkdir(self.cache_path)
|
||||
self.logger.info("Using CUDA cache dir %s", self.cache_path)
|
||||
|
||||
self.autotuner = None
|
||||
if (autotuning):
|
||||
self.logger.info("Autotuning enabled. It may take several minutes to run the code the first time: have patience")
|
||||
self.autotuner = Autotuner.Autotuner()
|
||||
|
||||
|
||||
def __del__(self, *args):
|
||||
self.logger.info("Cleaning up CUDA context handle <%s>", str(self.cuda_context.handle))
|
||||
|
||||
# Loop over all contexts in stack, and remove "this"
|
||||
other_contexts = []
|
||||
while (cuda.Context.get_current() != None):
|
||||
context = cuda.Context.get_current()
|
||||
if (context.handle != self.cuda_context.handle):
|
||||
self.logger.debug("<%s> Popping <%s> (*not* ours)", str(self.cuda_context.handle), str(context.handle))
|
||||
other_contexts = [context] + other_contexts
|
||||
cuda.Context.pop()
|
||||
else:
|
||||
self.logger.debug("<%s> Popping <%s> (ours)", str(self.cuda_context.handle), str(context.handle))
|
||||
cuda.Context.pop()
|
||||
|
||||
# Add all the contexts we popped that were not our own
|
||||
for context in other_contexts:
|
||||
self.logger.debug("<%s> Pushing <%s>", str(self.cuda_context.handle), str(context.handle))
|
||||
cuda.Context.push(context)
|
||||
|
||||
self.logger.debug("<%s> Detaching", str(self.cuda_context.handle))
|
||||
self.cuda_context.detach()
|
||||
|
||||
|
||||
def __str__(self):
|
||||
return "CudaContext id " + str(self.cuda_context.handle)
|
||||
|
||||
|
||||
def hash_kernel(kernel_filename, include_dirs):
|
||||
# Generate a kernel ID for our caches
|
||||
num_includes = 0
|
||||
max_includes = 100
|
||||
kernel_hasher = hashlib.md5()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Loop over file and includes, and check if something has changed
|
||||
files = [kernel_filename]
|
||||
while len(files):
|
||||
|
||||
if (num_includes > max_includes):
|
||||
raise("Maximum number of includes reached - circular include in {:}?".format(kernel_filename))
|
||||
|
||||
filename = files.pop()
|
||||
|
||||
#logger.debug("Hashing %s", filename)
|
||||
|
||||
modified = os.path.getmtime(filename)
|
||||
|
||||
# Open the file
|
||||
with io.open(filename, "r") as file:
|
||||
|
||||
# Search for #inclue <something> and also hash the file
|
||||
file_str = file.read()
|
||||
kernel_hasher.update(file_str.encode('utf-8'))
|
||||
kernel_hasher.update(str(modified).encode('utf-8'))
|
||||
|
||||
#Find all includes
|
||||
includes = re.findall('^\W*#include\W+(.+?)\W*$', file_str, re.M)
|
||||
|
||||
# Loop over everything that looks like an include
|
||||
for include_file in includes:
|
||||
|
||||
#Search through include directories for the file
|
||||
file_path = os.path.dirname(filename)
|
||||
for include_path in [file_path] + include_dirs:
|
||||
|
||||
# If we find it, add it to list of files to check
|
||||
temp_path = os.path.join(include_path, include_file)
|
||||
if (os.path.isfile(temp_path)):
|
||||
files = files + [temp_path]
|
||||
num_includes = num_includes + 1 #For circular includes...
|
||||
break
|
||||
|
||||
return kernel_hasher.hexdigest()
|
||||
|
||||
"""
|
||||
Reads a text file and creates an OpenCL kernel from that
|
||||
"""
|
||||
def get_prepared_kernel(self, kernel_filename, kernel_function_name, \
|
||||
prepared_call_args, \
|
||||
include_dirs=[], no_extern_c=True,
|
||||
**kwargs):
|
||||
"""
|
||||
Helper function to print compilation output
|
||||
"""
|
||||
def cuda_compile_message_handler(compile_success_bool, info_str, error_str):
|
||||
self.logger.debug("Compilation returned %s", str(compile_success_bool))
|
||||
if info_str:
|
||||
self.logger.debug("Info: %s", info_str)
|
||||
if error_str:
|
||||
self.logger.debug("Error: %s", error_str)
|
||||
|
||||
#self.logger.debug("Getting %s", kernel_filename)
|
||||
|
||||
# Create a hash of the kernel (and its includes)
|
||||
kwargs_hasher = hashlib.md5()
|
||||
kwargs_hasher.update(str(kwargs).encode('utf-8'));
|
||||
kwargs_hash = kwargs_hasher.hexdigest()
|
||||
kwargs_hasher = None
|
||||
root, ext = os.path.splitext(kernel_filename)
|
||||
kernel_hash = root \
|
||||
+ "_" + CudaContext.hash_kernel( \
|
||||
os.path.join(self.module_path, kernel_filename), \
|
||||
include_dirs=[self.module_path] + include_dirs) \
|
||||
+ "_" + kwargs_hash \
|
||||
+ ext
|
||||
cached_kernel_filename = os.path.join(self.cache_path, kernel_hash)
|
||||
|
||||
# If we have the kernel in our hashmap, return it
|
||||
if (kernel_hash in self.kernels.keys()):
|
||||
self.logger.debug("Found kernel %s cached in hashmap (%s)", kernel_filename, kernel_hash)
|
||||
return self.kernels[kernel_hash]
|
||||
|
||||
# If we have it on disk, return it
|
||||
elif (self.use_cache and os.path.isfile(cached_kernel_filename)):
|
||||
self.logger.debug("Found kernel %s cached on disk (%s)", kernel_filename, kernel_hash)
|
||||
|
||||
with io.open(cached_kernel_filename, "rb") as file:
|
||||
file_str = file.read()
|
||||
module = cuda.module_from_buffer(file_str, message_handler=cuda_compile_message_handler)
|
||||
|
||||
kernel = module.get_function(kernel_function_name)
|
||||
kernel.prepare(prepared_call_args)
|
||||
self.kernels[kernel_hash] = kernel
|
||||
return kernel
|
||||
|
||||
# Otherwise, compile it from source
|
||||
else:
|
||||
self.logger.debug("Compiling %s (%s)", kernel_filename, kernel_hash)
|
||||
|
||||
#Create kernel string
|
||||
kernel_string = ""
|
||||
for key, value in kwargs.items():
|
||||
kernel_string += "#define {:s} {:s}\n".format(str(key), str(value))
|
||||
kernel_string += '#include "{:s}"'.format(os.path.join(self.module_path, kernel_filename))
|
||||
if (self.use_cache):
|
||||
with io.open(cached_kernel_filename + ".txt", "w") as file:
|
||||
file.write(kernel_string)
|
||||
|
||||
|
||||
with Timer("compiler") as timer:
|
||||
cubin = cuda_compiler.compile(kernel_string, include_dirs=include_dirs, no_extern_c=no_extern_c, cache_dir=False)
|
||||
module = cuda.module_from_buffer(cubin, message_handler=cuda_compile_message_handler)
|
||||
if (self.use_cache):
|
||||
with io.open(cached_kernel_filename, "wb") as file:
|
||||
file.write(cubin)
|
||||
|
||||
kernel = module.get_function(kernel_function_name)
|
||||
kernel.prepare(prepared_call_args)
|
||||
self.kernels[kernel_hash] = kernel
|
||||
|
||||
|
||||
return kernel
|
||||
|
||||
"""
|
||||
Clears the kernel cache (useful for debugging & development)
|
||||
"""
|
||||
def clear_kernel_cache(self):
|
||||
self.logger.debug("Clearing cache")
|
||||
self.kernels = {}
|
||||
gc.collect()
|
||||
|
||||
"""
|
||||
Synchronizes all streams etc
|
||||
"""
|
||||
def synchronize(self):
|
||||
self.cuda_context.synchronize()
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user