mirror of
				https://github.com/smyalygames/FiniteVolumeGPU.git
				synced 2025-10-31 20:17:41 +01:00 
			
		
		
		
	refactor(mpi): follow PEP8 scheme and replace .format() with f strings
This commit is contained in:
		
							parent
							
								
									7475d590eb
								
							
						
					
					
						commit
						0633561bbf
					
				| @ -29,6 +29,75 @@ import pycuda.driver as cuda | ||||
| #import nvtx | ||||
| 
 | ||||
| 
 | ||||
| def get_grid(num_nodes, num_dims): | ||||
|     if not isinstance(num_nodes, int): | ||||
|         raise TypeError("Parameter `num_nodes` is not a an integer.") | ||||
|     if not isinstance(num_dims, int): | ||||
|         raise TypeError("Parameter `num_dims` is not a an integer.") | ||||
| 
 | ||||
|     # Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors | ||||
|     # Original code by https://stackoverflow.com/users/3928385/ishamael | ||||
|     # Factorizes a number into n roughly equal factors | ||||
| 
 | ||||
|     #Dictionary to remember already computed permutations | ||||
|     memo = {} | ||||
|     def dp(n, left): # returns tuple (cost, [factors]) | ||||
|         """ | ||||
|         Recursively searches through all factorizations | ||||
|         """ | ||||
| 
 | ||||
|         #Already tried: return an existing result | ||||
|         if (n, left) in memo: | ||||
|             return memo[(n, left)] | ||||
| 
 | ||||
|         #Spent all factors: return number itself | ||||
|         if left == 1: | ||||
|             return (n, [n]) | ||||
| 
 | ||||
|         #Find a new factor | ||||
|         i = 2 | ||||
|         best = n | ||||
|         best_tuple = [n] | ||||
|         while i * i < n: | ||||
|             #If a factor found | ||||
|             if n % i == 0: | ||||
|                 #Factorize remainder | ||||
|                 rem = dp(n // i, left - 1) | ||||
| 
 | ||||
|                 #If new permutation better, save it | ||||
|                 if rem[0] + i < best: | ||||
|                     best = rem[0] + i | ||||
|                     best_tuple = [i] + rem[1] | ||||
|             i += 1 | ||||
| 
 | ||||
|         #Store calculation | ||||
|         memo[(n, left)] = (best, best_tuple) | ||||
|         return memo[(n, left)] | ||||
| 
 | ||||
| 
 | ||||
|     grid = dp(num_nodes, num_dims)[1] | ||||
| 
 | ||||
|     if len(grid) < num_dims: | ||||
|         #Split problematic 4 | ||||
|         if 4 in grid: | ||||
|             grid.remove(4) | ||||
|             grid.append(2) | ||||
|             grid.append(2) | ||||
| 
 | ||||
|         #Pad with ones to guarantee num_dims | ||||
|         grid = grid + [1]*(num_dims - len(grid)) | ||||
| 
 | ||||
|     #Sort in descending order | ||||
|     grid = np.sort(grid) | ||||
|     grid = grid[::-1] | ||||
| 
 | ||||
|     # XXX: We only use vertical (north-south) partitioning for now | ||||
|     grid[0] = 1 | ||||
|     grid[1] = num_nodes | ||||
| 
 | ||||
|     return grid | ||||
| 
 | ||||
| 
 | ||||
| class MPIGrid(object): | ||||
|     """ | ||||
|     Class which represents an MPI grid of nodes. Facilitates easy communication between | ||||
| @ -37,15 +106,16 @@ class MPIGrid(object): | ||||
| 
 | ||||
|     def __init__(self, comm, ndims=2): | ||||
|         self.logger =  logging.getLogger(__name__) | ||||
| 
 | ||||
|         if ndims != 2: | ||||
|             raise ValueError("Unsupported number of dimensions. Must be two at the moment") | ||||
|         if comm.size < 1: | ||||
|             raise ValueError("Must have at least one node") | ||||
|          | ||||
|         assert ndims == 2, "Unsupported number of dimensions. Must be two at the moment" | ||||
|         assert comm.size >= 1, "Must have at least one node" | ||||
|          | ||||
|         self.grid = MPIGrid.get_grid(comm.size, ndims) | ||||
|         self.grid = get_grid(comm.size, ndims) | ||||
|         self.comm = comm | ||||
|          | ||||
|         self.logger.debug("Created MPI grid: {:}. Rank {:d} has coordinate {:}".format( | ||||
|                 self.grid, self.comm.rank, self.getCoordinate())) | ||||
|         self.logger.debug(f"Created MPI grid: {self.grid}. Rank {self.comm.rank} has coordinate {self.get_coordinate()}") | ||||
| 
 | ||||
|     def get_coordinate(self, rank=None): | ||||
|         if rank is None: | ||||
| @ -76,76 +146,10 @@ class MPIGrid(object): | ||||
|         i, j = self.get_coordinate(self.comm.rank) | ||||
|         j = (j+self.grid[1]-1) % self.grid[1] | ||||
|         return self.get_rank(i, j) | ||||
|      | ||||
|     def get_grid(num_nodes, num_dims): | ||||
|         assert(isinstance(num_nodes, int)) | ||||
|         assert(isinstance(num_dims, int)) | ||||
|          | ||||
|         # Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors | ||||
|         # Original code by https://stackoverflow.com/users/3928385/ishamael | ||||
|         # Factorizes a number into n roughly equal factors | ||||
| 
 | ||||
|         #Dictionary to remember already computed permutations | ||||
|         memo = {} | ||||
|         def dp(n, left): # returns tuple (cost, [factors]) | ||||
|             """ | ||||
|             Recursively searches through all factorizations | ||||
|             """ | ||||
| 
 | ||||
|             #Already tried: return existing result | ||||
|             if (n, left) in memo:  | ||||
|                 return memo[(n, left)] | ||||
| 
 | ||||
|             #Spent all factors: return number itself | ||||
|             if left == 1: | ||||
|                 return (n, [n]) | ||||
| 
 | ||||
|             #Find new factor | ||||
|             i = 2 | ||||
|             best = n | ||||
|             bestTuple = [n] | ||||
|             while i * i < n: | ||||
|                 #If factor found | ||||
|                 if n % i == 0: | ||||
|                     #Factorize remainder | ||||
|                     rem = dp(n // i, left - 1) | ||||
| 
 | ||||
|                     #If new permutation better, save it | ||||
|                     if rem[0] + i < best: | ||||
|                         best = rem[0] + i | ||||
|                         bestTuple = [i] + rem[1] | ||||
|                 i += 1 | ||||
| 
 | ||||
|             #Store calculation | ||||
|             memo[(n, left)] = (best, bestTuple) | ||||
|             return memo[(n, left)] | ||||
| 
 | ||||
| 
 | ||||
|         grid = dp(num_nodes, num_dims)[1] | ||||
| 
 | ||||
|         if (len(grid) < num_dims): | ||||
|             #Split problematic 4 | ||||
|             if (4 in grid): | ||||
|                 grid.remove(4) | ||||
|                 grid.append(2) | ||||
|                 grid.append(2) | ||||
| 
 | ||||
|             #Pad with ones to guarantee num_dims | ||||
|             grid = grid + [1]*(num_dims - len(grid)) | ||||
|          | ||||
|         #Sort in descending order | ||||
|         grid = np.sort(grid) | ||||
|         grid = grid[::-1] | ||||
| 
 | ||||
|         # XXX: We only use vertical (north-south) partitioning for now | ||||
|         grid[0] = 1 | ||||
|         grid[1] = num_nodes | ||||
|          | ||||
|         return grid | ||||
| 
 | ||||
|     def gather(self, data, root=0): | ||||
|         out_data = None | ||||
|         if (self.comm.rank == root): | ||||
|         if self.comm.rank == root: | ||||
|             out_data = np.empty([self.comm.size] + list(data.shape), dtype=data.dtype) | ||||
|         self.comm.Gather(data, out_data, root) | ||||
|         return out_data | ||||
| @ -206,7 +210,7 @@ class MPISimulator(Simulator.BaseSimulator): | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, sim, grid):         | ||||
|         self.profiling_data_mpi = { 'start': {}, 'end': {} } | ||||
|         self.profiling_data_mpi = {'start': {}, 'end': {}} | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange"] = 0 | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange"] = 0 | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] = 0 | ||||
| @ -221,7 +225,7 @@ class MPISimulator(Simulator.BaseSimulator): | ||||
|         self.logger =  logging.getLogger(__name__) | ||||
|          | ||||
|         autotuner = sim.context.autotuner | ||||
|         sim.context.autotuner = None; | ||||
|         sim.context.autotuner = None | ||||
|         boundary_conditions = sim.get_boundary_conditions() | ||||
|         super().__init__(sim.context,  | ||||
|             sim.nx, sim.ny,  | ||||
| @ -251,18 +255,18 @@ class MPISimulator(Simulator.BaseSimulator): | ||||
|         }) | ||||
|         gi, gj = grid.get_coordinate() | ||||
|         #print("gi: " + str(gi) + ", gj: " + str(gj)) | ||||
|         if (gi == 0 and boundary_conditions.west != Simulator.BoundaryCondition.Type.Periodic): | ||||
|         if gi == 0 and boundary_conditions.west != Simulator.BoundaryCondition.Type.Periodic: | ||||
|             self.west = None | ||||
|             new_boundary_conditions.west = boundary_conditions.west; | ||||
|         if (gj == 0 and boundary_conditions.south != Simulator.BoundaryCondition.Type.Periodic): | ||||
|             new_boundary_conditions.west = boundary_conditions.west | ||||
|         if gj == 0 and boundary_conditions.south != Simulator.BoundaryCondition.Type.Periodic: | ||||
|             self.south = None | ||||
|             new_boundary_conditions.south = boundary_conditions.south; | ||||
|         if (gi == grid.grid[0]-1 and boundary_conditions.east != Simulator.BoundaryCondition.Type.Periodic): | ||||
|             new_boundary_conditions.south = boundary_conditions.south | ||||
|         if gi == grid.grid[0]-1 and boundary_conditions.east != Simulator.BoundaryCondition.Type.Periodic: | ||||
|             self.east = None | ||||
|             new_boundary_conditions.east = boundary_conditions.east; | ||||
|         if (gj == grid.grid[1]-1 and boundary_conditions.north != Simulator.BoundaryCondition.Type.Periodic): | ||||
|             new_boundary_conditions.east = boundary_conditions.east | ||||
|         if gj == grid.grid[1]-1 and boundary_conditions.north != Simulator.BoundaryCondition.Type.Periodic: | ||||
|             self.north = None | ||||
|             new_boundary_conditions.north = boundary_conditions.north; | ||||
|             new_boundary_conditions.north = boundary_conditions.north | ||||
|         sim.set_boundary_conditions(new_boundary_conditions) | ||||
|                  | ||||
|         #Get number of variables | ||||
| @ -302,7 +306,7 @@ class MPISimulator(Simulator.BaseSimulator): | ||||
|         self.out_n = cuda.pagelocked_empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), dtype=np.float32) #np.empty_like(self.in_n) | ||||
|         self.out_s = cuda.pagelocked_empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), dtype=np.float32) #np.empty_like(self.in_s) | ||||
|          | ||||
|         self.logger.debug("Simlator rank {:d} initialized on {:s}".format(self.grid.comm.rank, MPI.Get_processor_name())) | ||||
|         self.logger.debug(f"Simulator rank {self.grid.comm.rank} initialized on {MPI.Get_processor_name()}") | ||||
| 
 | ||||
|         self.full_exchange() | ||||
|         sim.context.synchronize() | ||||
| @ -346,16 +350,16 @@ class MPISimulator(Simulator.BaseSimulator): | ||||
|         return self.sim.check() | ||||
|          | ||||
|     def compute_dt(self): | ||||
|         local_dt = np.array([np.float32(self.sim.compute_dt())]); | ||||
|         local_dt = np.array([np.float32(self.sim.compute_dt())]) | ||||
|         global_dt = np.empty(1, dtype=np.float32) | ||||
|         self.grid.comm.Allreduce(local_dt, global_dt, op=MPI.MIN) | ||||
|         self.logger.debug("Local dt: {:f}, global dt: {:f}".format(local_dt[0], global_dt[0])) | ||||
|         self.logger.debug(f"Local dt: {local_dt[0]}, global dt: {global_dt[0]}") | ||||
|         return global_dt[0] | ||||
|          | ||||
|     def get_extent(self): | ||||
|         """ | ||||
|         Function which returns the extent of node with rank  | ||||
|         rank in the grid | ||||
|         in the grid | ||||
|         """ | ||||
| 
 | ||||
|         width = self.sim.nx*self.sim.dx | ||||
| @ -385,7 +389,7 @@ class MPISimulator(Simulator.BaseSimulator): | ||||
|          | ||||
|         self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time() | ||||
|          | ||||
|         #Send/receive to north/south neighbours | ||||
|         #Send/receive to north/south neighbors | ||||
|         self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time() | ||||
|          | ||||
|         comm_send = [] | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Anthony Berg
						Anthony Berg