ACIT4330-Page/public/ACIT4330-Lectures.html
2025-03-01 14:26:36 +01:00

46 lines
36 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><head><title>ACIT4330 Lectures</title><meta charset="utf-8"/><link rel="preconnect" href="https://fonts.googleapis.com"/><link rel="preconnect" href="https://fonts.gstatic.com"/><link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=IBM Plex Mono&amp;family=Schibsted Grotesk:wght@400;700&amp;family=Source Sans Pro:ital,wght@0,400;0,600;1,400;1,600&amp;display=swap"/><link rel="preconnect" href="https://cdnjs.cloudflare.com" crossorigin="anonymous"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><meta name="og:site_name" content="🪴 Quartz 4.0"/><meta property="og:title" content="ACIT4330 Lectures"/><meta property="og:type" content="website"/><meta name="twitter:card" content="summary_large_image"/><meta name="twitter:title" content="ACIT4330 Lectures"/><meta name="twitter:description" content="Chapter 1 1.1 Sets and Numbers Lecture 1 - 1.1 Sets and Numbers (complimentary written notes: ACIT4330-2025-01-06-Lecture 1.rnote) Lecture 2 (complimentary written notes: ACIT4330-2025-01-09-Lecture ..."/><meta property="og:description" content="Chapter 1 1.1 Sets and Numbers Lecture 1 - 1.1 Sets and Numbers (complimentary written notes: ACIT4330-2025-01-06-Lecture 1.rnote) Lecture 2 (complimentary written notes: ACIT4330-2025-01-09-Lecture ..."/><meta property="og:image:type" content="image/webp"/><meta property="og:image:alt" content="Chapter 1 1.1 Sets and Numbers Lecture 1 - 1.1 Sets and Numbers (complimentary written notes: ACIT4330-2025-01-06-Lecture 1.rnote) Lecture 2 (complimentary written notes: ACIT4330-2025-01-09-Lecture ..."/><meta property="og:image:width" content="1200"/><meta property="og:image:height" content="630"/><meta property="og:image:url" content="https://quartz.jzhao.xyz/static/og-image.png"/><meta name="twitter:image" content="https://quartz.jzhao.xyz/static/og-image.png"/><meta property="og:image" content="https://quartz.jzhao.xyz/static/og-image.png"/><meta property="twitter:domain" content="quartz.jzhao.xyz"/><meta property="og:url" content="https://quartz.jzhao.xyz/ACIT4330-Lectures"/><meta property="twitter:url" content="https://quartz.jzhao.xyz/ACIT4330-Lectures"/><link rel="icon" href="./static/icon.png"/><meta name="description" content="Chapter 1 1.1 Sets and Numbers Lecture 1 - 1.1 Sets and Numbers (complimentary written notes: ACIT4330-2025-01-06-Lecture 1.rnote) Lecture 2 (complimentary written notes: ACIT4330-2025-01-09-Lecture ..."/><meta name="generator" content="Quartz"/><link href="./index.css" rel="stylesheet" type="text/css" spa-preserve/><link href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" rel="stylesheet" type="text/css" spa-preserve/><script src="./prescript.js" type="application/javascript" spa-preserve></script><script type="application/javascript" spa-preserve>const fetchData = fetch("./static/contentIndex.json").then(data => data.json())</script></head><body data-slug="ACIT4330-Lectures"><div id="quartz-root" class="page"><div id="quartz-body"><div class="left sidebar"><h2 class="page-title"><a href=".">🪴 Quartz 4.0</a></h2><div class="spacer mobile-only"></div><div class="search"><button class="search-button" id="search-button"><p>Search</p><svg role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 19.9 19.7"><title>Search</title><g class="search-path" fill="none"><path stroke-linecap="square" d="M18.5 18.3l-5.4-5.4"></path><circle cx="8" cy="8" r="7"></circle></g></svg></button><div id="search-container"><div id="search-space"><input autocomplete="off" id="search-bar" name="search" type="text" aria-label="Search for something" placeholder="Search for something"/><div id="search-layout" data-preview="true"></div></div></div></div><button class="darkmode" id="darkmode"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="dayIcon" x="0px" y="0px" viewBox="0 0 35 35" style="enable-background:new 0 0 35 35" xml:space="preserve" aria-label="Dark mode"><title>Dark mode</title><path d="M6,17.5C6,16.672,5.328,16,4.5,16h-3C0.672,16,0,16.672,0,17.5 S0.672,19,1.5,19h3C5.328,19,6,18.328,6,17.5z M7.5,26c-0.414,0-0.789,0.168-1.061,0.439l-2,2C4.168,28.711,4,29.086,4,29.5 C4,30.328,4.671,31,5.5,31c0.414,0,0.789-0.168,1.06-0.44l2-2C8.832,28.289,9,27.914,9,27.5C9,26.672,8.329,26,7.5,26z M17.5,6 C18.329,6,19,5.328,19,4.5v-3C19,0.672,18.329,0,17.5,0S16,0.672,16,1.5v3C16,5.328,16.671,6,17.5,6z M27.5,9 c0.414,0,0.789-0.168,1.06-0.439l2-2C30.832,6.289,31,5.914,31,5.5C31,4.672,30.329,4,29.5,4c-0.414,0-0.789,0.168-1.061,0.44 l-2,2C26.168,6.711,26,7.086,26,7.5C26,8.328,26.671,9,27.5,9z M6.439,8.561C6.711,8.832,7.086,9,7.5,9C8.328,9,9,8.328,9,7.5 c0-0.414-0.168-0.789-0.439-1.061l-2-2C6.289,4.168,5.914,4,5.5,4C4.672,4,4,4.672,4,5.5c0,0.414,0.168,0.789,0.439,1.06 L6.439,8.561z M33.5,16h-3c-0.828,0-1.5,0.672-1.5,1.5s0.672,1.5,1.5,1.5h3c0.828,0,1.5-0.672,1.5-1.5S34.328,16,33.5,16z M28.561,26.439C28.289,26.168,27.914,26,27.5,26c-0.828,0-1.5,0.672-1.5,1.5c0,0.414,0.168,0.789,0.439,1.06l2,2 C28.711,30.832,29.086,31,29.5,31c0.828,0,1.5-0.672,1.5-1.5c0-0.414-0.168-0.789-0.439-1.061L28.561,26.439z M17.5,29 c-0.829,0-1.5,0.672-1.5,1.5v3c0,0.828,0.671,1.5,1.5,1.5s1.5-0.672,1.5-1.5v-3C19,29.672,18.329,29,17.5,29z M17.5,7 C11.71,7,7,11.71,7,17.5S11.71,28,17.5,28S28,23.29,28,17.5S23.29,7,17.5,7z M17.5,25c-4.136,0-7.5-3.364-7.5-7.5 c0-4.136,3.364-7.5,7.5-7.5c4.136,0,7.5,3.364,7.5,7.5C25,21.636,21.636,25,17.5,25z"></path></svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="nightIcon" x="0px" y="0px" viewBox="0 0 100 100" style="enable-background:new 0 0 100 100" xml:space="preserve" aria-label="Light mode"><title>Light mode</title><path d="M96.76,66.458c-0.853-0.852-2.15-1.064-3.23-0.534c-6.063,2.991-12.858,4.571-19.655,4.571 C62.022,70.495,50.88,65.88,42.5,57.5C29.043,44.043,25.658,23.536,34.076,6.47c0.532-1.08,0.318-2.379-0.534-3.23 c-0.851-0.852-2.15-1.064-3.23-0.534c-4.918,2.427-9.375,5.619-13.246,9.491c-9.447,9.447-14.65,22.008-14.65,35.369 c0,13.36,5.203,25.921,14.65,35.368s22.008,14.65,35.368,14.65c13.361,0,25.921-5.203,35.369-14.65 c3.872-3.871,7.064-8.328,9.491-13.246C97.826,68.608,97.611,67.309,96.76,66.458z"></path></svg></button><div class="explorer"><button type="button" id="mobile-explorer" class="collapsed hide-until-loaded" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{&quot;path&quot;:&quot;Definitions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Functions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory/Sigma-Algebra&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Metric-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Sets&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Statements&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Terminology&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Induced&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Terminologies&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Vector-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Lectures&quot;,&quot;collapsed&quot;:true}]" data-mobile="true" aria-controls="explorer-content" aria-expanded="false"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-menu"><line x1="4" x2="20" y1="12" y2="12"></line><line x1="4" x2="20" y1="6" y2="6"></line><line x1="4" x2="20" y1="18" y2="18"></line></svg></button><button type="button" id="desktop-explorer" class="title-button" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{&quot;path&quot;:&quot;Definitions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Functions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory/Sigma-Algebra&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Metric-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Sets&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Statements&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Terminology&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Induced&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Terminologies&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Vector-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Lectures&quot;,&quot;collapsed&quot;:true}]" data-mobile="false" aria-controls="explorer-content" aria-expanded="true"><h2>Explorer</h2><svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="fold"><polyline points="6 9 12 15 18 9"></polyline></svg></button><div id="explorer-content"><ul class="overflow" id="explorer-ul"><li><div class="folder-outer open"><ul style="padding-left:0;" class="content" data-folderul><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions"><button class="folder-button"><span class="folder-title">Definitions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Functions"><button class="folder-button"><span class="folder-title">Functions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Functions"><li><a href="./Definitions/Functions/Characteristic-Function" data-for="Definitions/Functions/Characteristic-Function">Characteristic Function</a></li><li><a href="./Definitions/Functions/Direct-Product" data-for="Definitions/Functions/Direct-Product">Direct Product</a></li><li><a href="./Definitions/Functions/Inverse-Function" data-for="Definitions/Functions/Inverse-Function">Inverse Function</a></li><li><a href="./Definitions/Functions/Metric" data-for="Definitions/Functions/Metric">Metric</a></li><li><a href="./Definitions/Functions/Power-Set" data-for="Definitions/Functions/Power-Set">Power Set</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory"><button class="folder-button"><span class="folder-title">Measure Theory</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory/Sigma-Algebra"><button class="folder-button"><span class="folder-title">Sigma-Algebra</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory/Sigma-Algebra"><li><a href="./Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable">Borel Measurable</a></li><li><a href="./Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets">Borel Sets</a></li><li><a href="./Definitions/Measure-Theory/Sigma-Algebra/Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measurable">Measurable</a></li><li><a href="./Definitions/Measure-Theory/Sigma-Algebra/Measure" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measure">Measure</a></li><li><a href="./Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra" data-for="Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra">Sigma-Algebra</a></li></ul></div></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Metric-Spaces"><button class="folder-button"><span class="folder-title">Metric Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Metric-Spaces"><li><a href="./Definitions/Metric-Spaces/Ball" data-for="Definitions/Metric-Spaces/Ball">Ball</a></li><li><a href="./Definitions/Metric-Spaces/Interior-Point" data-for="Definitions/Metric-Spaces/Interior-Point">Interior Point</a></li><li><a href="./Definitions/Metric-Spaces/Metric-Space" data-for="Definitions/Metric-Spaces/Metric-Space">Metric Space</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Sets"><button class="folder-button"><span class="folder-title">Sets</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Sets"><li><a href="./Definitions/Sets/Complex-Numbers" data-for="Definitions/Sets/Complex-Numbers">Complex Numbers</a></li><li><a href="./Definitions/Sets/Open-Cover" data-for="Definitions/Sets/Open-Cover">Open Cover</a></li><li><a href="./Definitions/Sets/Open-Map" data-for="Definitions/Sets/Open-Map">Open Map</a></li><li><a href="./Definitions/Sets/Open-Sets" data-for="Definitions/Sets/Open-Sets">Open Sets</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Statements"><button class="folder-button"><span class="folder-title">Statements</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Statements"><li><a href="./Definitions/Statements/And" data-for="Definitions/Statements/And">And</a></li><li><a href="./Definitions/Statements/Implies" data-for="Definitions/Statements/Implies">Implies</a></li><li><a href="./Definitions/Statements/Not" data-for="Definitions/Statements/Not">Not</a></li><li><a href="./Definitions/Statements/Or" data-for="Definitions/Statements/Or">Or</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Terminology"><button class="folder-button"><span class="folder-title">Terminology</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Terminology"><li><a href="./Definitions/Terminology/Algebraically-Complete" data-for="Definitions/Terminology/Algebraically-Complete">Algebraically Complete</a></li><li><a href="./Definitions/Terminology/Bijective" data-for="Definitions/Terminology/Bijective">Bijective</a></li><li><a href="./Definitions/Terminology/Bounded" data-for="Definitions/Terminology/Bounded">Bounded</a></li><li><a href="./Definitions/Terminology/Countable" data-for="Definitions/Terminology/Countable">Countable</a></li><li><a href="./Definitions/Terminology/Injective" data-for="Definitions/Terminology/Injective">Injective</a></li><li><a href="./Definitions/Terminology/QED" data-for="Definitions/Terminology/QED">QED</a></li><li><a href="./Definitions/Terminology/Surjective" data-for="Definitions/Terminology/Surjective">Surjective</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces"><button class="folder-button"><span class="folder-title">Topological Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Induced"><button class="folder-button"><span class="folder-title">Induced</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Induced"><li><a href="./Definitions/Topological-Spaces/Induced/Initial-Topology" data-for="Definitions/Topological-Spaces/Induced/Initial-Topology">Initial Topology</a></li><li><a href="./Definitions/Topological-Spaces/Induced/Product-Topology" data-for="Definitions/Topological-Spaces/Induced/Product-Topology">Product Topology</a></li><li><a href="./Definitions/Topological-Spaces/Induced/Separating-Points" data-for="Definitions/Topological-Spaces/Induced/Separating-Points">Separating Points</a></li><li><a href="./Definitions/Topological-Spaces/Induced/Weakest-Topology" data-for="Definitions/Topological-Spaces/Induced/Weakest-Topology">Weakest Topology</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Terminologies"><button class="folder-button"><span class="folder-title">Terminologies</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Terminologies"><li><a href="./Definitions/Topological-Spaces/Terminologies/Compact" data-for="Definitions/Topological-Spaces/Terminologies/Compact">Compact</a></li><li><a href="./Definitions/Topological-Spaces/Terminologies/Connected" data-for="Definitions/Topological-Spaces/Terminologies/Connected">Connected</a></li><li><a href="./Definitions/Topological-Spaces/Terminologies/Connected-Component" data-for="Definitions/Topological-Spaces/Terminologies/Connected-Component">Connected Component</a></li></ul></div></li><li><a href="./Definitions/Topological-Spaces/Continuous" data-for="Definitions/Topological-Spaces/Continuous">Continuous</a></li><li><a href="./Definitions/Topological-Spaces/Hausdorff" data-for="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a></li><li><a href="./Definitions/Topological-Spaces/Topological-Space" data-for="Definitions/Topological-Spaces/Topological-Space">Topological Space</a></li><li><a href="./Definitions/Topological-Spaces/Topology" data-for="Definitions/Topological-Spaces/Topology">Topology</a></li><li><a href="./Definitions/Topological-Spaces/Tychonoff-Theorem" data-for="Definitions/Topological-Spaces/Tychonoff-Theorem">Tychonoff Theorem</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Vector-Spaces"><button class="folder-button"><span class="folder-title">Vector Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Vector-Spaces"><li><a href="./Definitions/Vector-Spaces/Complex-Vector-Space" data-for="Definitions/Vector-Spaces/Complex-Vector-Space">Complex Vector Space</a></li><li><a href="./Definitions/Vector-Spaces/Linear-Basis" data-for="Definitions/Vector-Spaces/Linear-Basis">Linear Basis</a></li><li><a href="./Definitions/Vector-Spaces/Normed-Vector-Space" data-for="Definitions/Vector-Spaces/Normed-Vector-Space">Normed Vector Space</a></li><li><a href="./Definitions/Vector-Spaces/Properties-of-a-Vector-Space" data-for="Definitions/Vector-Spaces/Properties-of-a-Vector-Space">Properties of a Vector Space</a></li></ul></div></li><li><a href="./Definitions/Cauchy-Sequence" data-for="Definitions/Cauchy-Sequence">Cauchy Sequence</a></li><li><a href="./Definitions/Cauchy-Schwarz-Inequality" data-for="Definitions/Cauchy-Schwarz-Inequality">Cauchy-Schwarz Inequality</a></li><li><a href="./Definitions/Hilbert-Spaces" data-for="Definitions/Hilbert-Spaces">Hilbert Spaces</a></li><li><a href="./Definitions/Inner-Product" data-for="Definitions/Inner-Product">Inner Product</a></li><li><a href="./Definitions/Least-Upper-Bound-Property" data-for="Definitions/Least-Upper-Bound-Property">Least Upper Bound Property</a></li><li><a href="./Definitions/Linear-Map" data-for="Definitions/Linear-Map">Linear Map</a></li><li><a href="./Definitions/Nets" data-for="Definitions/Nets">Nets</a></li><li><a href="./Definitions/Norm" data-for="Definitions/Norm">Norm</a></li><li><a href="./Definitions/Number-Field" data-for="Definitions/Number-Field">Number Field</a></li><li><a href="./Definitions/Period-of-a-Fraction" data-for="Definitions/Period-of-a-Fraction">Period of a Fraction</a></li><li><a href="./Definitions/Rational-Cauchy-Sequences" data-for="Definitions/Rational-Cauchy-Sequences">Rational Cauchy Sequences</a></li><li><a href="./Definitions/Subcover" data-for="Definitions/Subcover">Subcover</a></li><li><a href="./Definitions/Subnet" data-for="Definitions/Subnet">Subnet</a></li></ul></div></li><li><div class="folder-outer "><ul style="padding-left:0;" class="content" data-folderul></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Lectures"><button class="folder-button"><span class="folder-title">Lectures</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Lectures"><li><a href="./Lectures/Lecture-1---1.1-Sets-and-Numbers" data-for="Lectures/Lecture-1---1.1-Sets-and-Numbers">Lecture 1 - 1.1 Sets and Numbers</a></li><li><a href="./Lectures/Lecture-2" data-for="Lectures/Lecture-2">Lecture 2</a></li><li><a href="./Lectures/Lecture-3" data-for="Lectures/Lecture-3">Lecture 3</a></li><li><a href="./Lectures/Lecture-4---1.2-Metric-Spaces" data-for="Lectures/Lecture-4---1.2-Metric-Spaces">Lecture 4 - 1.2 Metric Spaces</a></li><li><a href="./Lectures/Lecture-5" data-for="Lectures/Lecture-5">Lecture 5</a></li><li><a href="./Lectures/Lecture-6---2.1-Topology" data-for="Lectures/Lecture-6---2.1-Topology">Lecture 6 - 2.1 Topology</a></li><li><a href="./Lectures/Lecture-7" data-for="Lectures/Lecture-7">Lecture 7</a></li><li><a href="./Lectures/Lecture-8" data-for="Lectures/Lecture-8">Lecture 8</a></li><li><a href="./Lectures/Lecture-11" data-for="Lectures/Lecture-11">Lecture 11</a></li><li><a href="./Lectures/Lecture-12---Induced-Topologies" data-for="Lectures/Lecture-12---Induced-Topologies">Lecture 12 - Induced Topologies</a></li><li><a href="./Lectures/Lecture-13---Measure-Theory" data-for="Lectures/Lecture-13---Measure-Theory">Lecture 13 - Measure Theory</a></li></ul></div></li><li><a href="./ACIT4330-Lectures" data-for="ACIT4330-Lectures">ACIT4330 Lectures</a></li></ul></div></li><li id="explorer-end"></li></ul></div></div></div><div class="center"><div class="page-header"><div class="popover-hint"><nav class="breadcrumb-container" aria-label="breadcrumbs"><div class="breadcrumb-element"><a href="./">Home</a><p> </p></div><div class="breadcrumb-element"><a href>ACIT4330 Lectures</a></div></nav><h1 class="article-title">ACIT4330 Lectures</h1><p show-comma="true" class="content-meta"><time datetime="2025-03-01T12:58:10.778Z">Mar 01, 2025</time><span>1 min read</span></p></div></div><article class="popover-hint"><h1 id="chapter-1">Chapter 1<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#chapter-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
<h2 id="11-sets-and-numbers">1.1 Sets and Numbers<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#11-sets-and-numbers" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<ul>
<li><a href="./Lectures/Lecture-1---1.1-Sets-and-Numbers" class="internal alias" data-slug="Lectures/Lecture-1---1.1-Sets-and-Numbers">Lecture 1 - 1.1 Sets and Numbers</a> (complimentary written notes: <a href="./rnote/ACIT4330-2025-01-06-Lecture-1.rnote" class="internal alias" data-slug="rnote/ACIT4330-2025-01-06-Lecture-1.rnote">ACIT4330-2025-01-06-Lecture 1.rnote</a>)</li>
<li><a href="./Lectures/Lecture-2" class="internal alias" data-slug="Lectures/Lecture-2">Lecture 2</a> (complimentary written notes: <a href="./rnote/ACIT4330-2025-01-09-Lecture-2.rnote" class="internal alias" data-slug="rnote/ACIT4330-2025-01-09-Lecture-2.rnote">ACIT4330-2025-01-09-Lecture 2.rnote</a>)</li>
<li><a href="./Lectures/Lecture-3" class="internal alias" data-slug="Lectures/Lecture-3">Lecture 3</a></li>
<li><a href="./Lectures/Lecture-4---1.2-Metric-Spaces#the-inverse-image" class="internal alias" data-slug="Lectures/Lecture-4---1.2-Metric-Spaces">The Inverse Image</a> and <a href="./Lectures/Lecture-4---1.2-Metric-Spaces#complex-numbers" class="internal alias" data-slug="Lectures/Lecture-4---1.2-Metric-Spaces">Complex Numbers</a>.</li>
</ul>
<h2 id="12-metric-spaces">1.2 Metric Spaces<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#12-metric-spaces" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<ul>
<li><a href="./Lectures/Lecture-4---1.2-Metric-Spaces" class="internal alias" data-slug="Lectures/Lecture-4---1.2-Metric-Spaces">Lecture 4 - 1.2 Metric Spaces</a></li>
<li><a href="./Lectures/Lecture-5" class="internal alias" data-slug="Lectures/Lecture-5">Lecture 5</a></li>
</ul>
<h1 id="chapter-2">Chapter 2<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#chapter-2" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
<h2 id="21-topology">2.1 Topology<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#21-topology" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<ul>
<li><a href="./Lectures/Lecture-6---2.1-Topology" class="internal alias" data-slug="Lectures/Lecture-6---2.1-Topology">Lecture 6 - 2.1 Topology</a></li>
<li><a href="./Lectures/Lecture-7" class="internal alias" data-slug="Lectures/Lecture-7">Lecture 7</a> (complimentary written notes: <a href="./rnote/ACIT4330-2025-01-30-Lecture-7.rnote" class="internal alias" data-slug="rnote/ACIT4330-2025-01-30-Lecture-7.rnote">ACIT4330-2025-01-30-Lecture 7.rnote</a>)</li>
<li><a href="./Lectures/Lecture-8" class="internal alias" data-slug="Lectures/Lecture-8">Lecture 8</a></li>
</ul>
<h2 id="22-continuity">2.2 Continuity<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#22-continuity" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<ul>
<li><a href="./Lectures/Lecture-8" class="internal alias" data-slug="Lectures/Lecture-8">Lecture 8</a></li>
<li><a href="./ACIT4330/Lectures/Lecture-11" class="internal alias" data-slug="ACIT4330/Lectures/Lecture-11">Lecture 11</a></li>
<li><a href="./Lectures/Lecture-12---Induced-Topologies" class="internal alias" data-slug="Lectures/Lecture-12---Induced-Topologies">Lecture 12 - Induced Topologies</a></li>
</ul>
<h1 id="measure-theory">Measure Theory<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#measure-theory" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
<ul>
<li><a href="./Lectures/Lecture-13---Measure-Theory" class="internal alias" data-slug="Lectures/Lecture-13---Measure-Theory">Lecture 13 - Measure Theory</a></li>
</ul></article><hr/><div class="page-footer"></div></div><div class="right sidebar"><div class="graph"><h3>Graph View</h3><div class="graph-outer"><div id="graph-container" data-cfg="{&quot;drag&quot;:true,&quot;zoom&quot;:true,&quot;depth&quot;:1,&quot;scale&quot;:1.1,&quot;repelForce&quot;:0.5,&quot;centerForce&quot;:0.3,&quot;linkDistance&quot;:30,&quot;fontSize&quot;:0.6,&quot;opacityScale&quot;:1,&quot;showTags&quot;:true,&quot;removeTags&quot;:[],&quot;focusOnHover&quot;:false,&quot;enableRadial&quot;:false}"></div><button id="global-graph-icon" aria-label="Global Graph"><svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 55 55" fill="currentColor" xml:space="preserve"><path d="M49,0c-3.309,0-6,2.691-6,6c0,1.035,0.263,2.009,0.726,2.86l-9.829,9.829C32.542,17.634,30.846,17,29,17
s-3.542,0.634-4.898,1.688l-7.669-7.669C16.785,10.424,17,9.74,17,9c0-2.206-1.794-4-4-4S9,6.794,9,9s1.794,4,4,4
c0.74,0,1.424-0.215,2.019-0.567l7.669,7.669C21.634,21.458,21,23.154,21,25s0.634,3.542,1.688,4.897L10.024,42.562
C8.958,41.595,7.549,41,6,41c-3.309,0-6,2.691-6,6s2.691,6,6,6s6-2.691,6-6c0-1.035-0.263-2.009-0.726-2.86l12.829-12.829
c1.106,0.86,2.44,1.436,3.898,1.619v10.16c-2.833,0.478-5,2.942-5,5.91c0,3.309,2.691,6,6,6s6-2.691,6-6c0-2.967-2.167-5.431-5-5.91
v-10.16c1.458-0.183,2.792-0.759,3.898-1.619l7.669,7.669C41.215,39.576,41,40.26,41,41c0,2.206,1.794,4,4,4s4-1.794,4-4
s-1.794-4-4-4c-0.74,0-1.424,0.215-2.019,0.567l-7.669-7.669C36.366,28.542,37,26.846,37,25s-0.634-3.542-1.688-4.897l9.665-9.665
C46.042,11.405,47.451,12,49,12c3.309,0,6-2.691,6-6S52.309,0,49,0z M11,9c0-1.103,0.897-2,2-2s2,0.897,2,2s-0.897,2-2,2
S11,10.103,11,9z M6,51c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S8.206,51,6,51z M33,49c0,2.206-1.794,4-4,4s-4-1.794-4-4
s1.794-4,4-4S33,46.794,33,49z M29,31c-3.309,0-6-2.691-6-6s2.691-6,6-6s6,2.691,6,6S32.309,31,29,31z M47,41c0,1.103-0.897,2-2,2
s-2-0.897-2-2s0.897-2,2-2S47,39.897,47,41z M49,10c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S51.206,10,49,10z"></path></svg></button></div><div id="global-graph-outer"><div id="global-graph-container" data-cfg="{&quot;drag&quot;:true,&quot;zoom&quot;:true,&quot;depth&quot;:-1,&quot;scale&quot;:0.9,&quot;repelForce&quot;:0.5,&quot;centerForce&quot;:0.3,&quot;linkDistance&quot;:30,&quot;fontSize&quot;:0.6,&quot;opacityScale&quot;:1,&quot;showTags&quot;:true,&quot;removeTags&quot;:[],&quot;focusOnHover&quot;:true,&quot;enableRadial&quot;:true}"></div></div></div><div class="toc desktop-only"><button type="button" id="toc" class aria-controls="toc-content" aria-expanded="true"><h3>Table of Contents</h3><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="fold"><polyline points="6 9 12 15 18 9"></polyline></svg></button><div id="toc-content" class><ul class="overflow"><li class="depth-0"><a href="#chapter-1" data-for="chapter-1">Chapter 1</a></li><li class="depth-1"><a href="#11-sets-and-numbers" data-for="11-sets-and-numbers">1.1 Sets and Numbers</a></li><li class="depth-1"><a href="#12-metric-spaces" data-for="12-metric-spaces">1.2 Metric Spaces</a></li><li class="depth-0"><a href="#chapter-2" data-for="chapter-2">Chapter 2</a></li><li class="depth-1"><a href="#21-topology" data-for="21-topology">2.1 Topology</a></li><li class="depth-1"><a href="#22-continuity" data-for="22-continuity">2.2 Continuity</a></li><li class="depth-0"><a href="#measure-theory" data-for="measure-theory">Measure Theory</a></li></ul></div></div></div><footer class><p>Created with <a href="https://quartz.jzhao.xyz/">Quartz v4.4.0</a> © 2025</p><ul><li><a href="https://github.com/jackyzha0/quartz">GitHub</a></li><li><a href="https://discord.gg/cRFFHYye7t">Discord Community</a></li></ul></footer></div></div></body><script type="application/javascript">function c(){let t=this.parentElement;t.classList.toggle("is-collapsed");let l=t.classList.contains("is-collapsed")?this.scrollHeight:t.scrollHeight;t.style.maxHeight=l+"px";let o=t,e=t.parentElement;for(;e;){if(!e.classList.contains("callout"))return;let n=e.classList.contains("is-collapsed")?e.scrollHeight:e.scrollHeight+o.scrollHeight;e.style.maxHeight=n+"px",o=e,e=e.parentElement}}function i(){let t=document.getElementsByClassName("callout is-collapsible");for(let s of t){let l=s.firstElementChild;if(l){l.addEventListener("click",c),window.addCleanup(()=>l.removeEventListener("click",c));let e=s.classList.contains("is-collapsed")?l.scrollHeight:s.scrollHeight;s.style.maxHeight=e+"px"}}}document.addEventListener("nav",i);window.addEventListener("resize",i);
</script><script src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/copy-tex.min.js" type="application/javascript"></script><script type="application/javascript">
const socket = new WebSocket('ws://localhost:3001')
// reload(true) ensures resources like images and scripts are fetched again in firefox
socket.addEventListener('message', () => document.location.reload(true))
</script><script src="./postscript.js" type="module"></script></html>