generated from smyalygames/quartz
282 lines
212 KiB
HTML
282 lines
212 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><head><title>Lecture 11</title><meta charset="utf-8"/><link rel="preconnect" href="https://fonts.googleapis.com"/><link rel="preconnect" href="https://fonts.gstatic.com"/><link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=IBM Plex Mono&family=Schibsted Grotesk:wght@400;700&family=Source Sans Pro:ital,wght@0,400;0,600;1,400;1,600&display=swap"/><link rel="preconnect" href="https://cdnjs.cloudflare.com" crossorigin="anonymous"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><meta name="og:site_name" content="ACIT4330 Lecture Notes"/><meta property="og:title" content="Lecture 11"/><meta property="og:type" content="website"/><meta name="twitter:card" content="summary_large_image"/><meta name="twitter:title" content="Lecture 11"/><meta name="twitter:description" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta property="og:description" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta property="og:image:type" content="image/webp"/><meta property="og:image:alt" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta property="og:image:width" content="1200"/><meta property="og:image:height" content="630"/><meta property="og:image:url" content="https://https://acit4330.pages.anthonyberg.io//static/og-image.png"/><meta name="twitter:image" content="https://https://acit4330.pages.anthonyberg.io//static/og-image.png"/><meta property="og:image" content="https://https://acit4330.pages.anthonyberg.io//static/og-image.png"/><meta property="twitter:domain" content="https://acit4330.pages.anthonyberg.io/"/><meta property="og:url" content="https://https//acit4330.pages.anthonyberg.io/Lectures/Lecture-11"/><meta property="twitter:url" content="https://https//acit4330.pages.anthonyberg.io/Lectures/Lecture-11"/><link rel="icon" href="../static/icon.png"/><meta name="description" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta name="generator" content="Quartz"/><link href="../index.css" rel="stylesheet" type="text/css" spa-preserve/><link href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" rel="stylesheet" type="text/css" spa-preserve/><script src="../prescript.js" type="application/javascript" spa-preserve></script><script type="application/javascript" spa-preserve>const fetchData = fetch("../static/contentIndex.json").then(data => data.json())</script></head><body data-slug="Lectures/Lecture-11"><div id="quartz-root" class="page"><div id="quartz-body"><div class="left sidebar"><h2 class="page-title"><a href="..">ACIT4330 Lecture Notes</a></h2><div class="spacer mobile-only"></div><div class="search"><button class="search-button" id="search-button"><p>Search</p><svg role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 19.9 19.7"><title>Search</title><g class="search-path" fill="none"><path stroke-linecap="square" d="M18.5 18.3l-5.4-5.4"></path><circle cx="8" cy="8" r="7"></circle></g></svg></button><div id="search-container"><div id="search-space"><input autocomplete="off" id="search-bar" name="search" type="text" aria-label="Search for something" placeholder="Search for something"/><div id="search-layout" data-preview="true"></div></div></div></div><button class="darkmode" id="darkmode"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="dayIcon" x="0px" y="0px" viewBox="0 0 35 35" style="enable-background:new 0 0 35 35" xml:space="preserve" aria-label="Dark mode"><title>Dark mode</title><path d="M6,17.5C6,16.672,5.328,16,4.5,16h-3C0.672,16,0,16.672,0,17.5 S0.672,19,1.5,19h3C5.328,19,6,18.328,6,17.5z M7.5,26c-0.414,0-0.789,0.168-1.061,0.439l-2,2C4.168,28.711,4,29.086,4,29.5 C4,30.328,4.671,31,5.5,31c0.414,0,0.789-0.168,1.06-0.44l2-2C8.832,28.289,9,27.914,9,27.5C9,26.672,8.329,26,7.5,26z M17.5,6 C18.329,6,19,5.328,19,4.5v-3C19,0.672,18.329,0,17.5,0S16,0.672,16,1.5v3C16,5.328,16.671,6,17.5,6z M27.5,9 c0.414,0,0.789-0.168,1.06-0.439l2-2C30.832,6.289,31,5.914,31,5.5C31,4.672,30.329,4,29.5,4c-0.414,0-0.789,0.168-1.061,0.44 l-2,2C26.168,6.711,26,7.086,26,7.5C26,8.328,26.671,9,27.5,9z M6.439,8.561C6.711,8.832,7.086,9,7.5,9C8.328,9,9,8.328,9,7.5 c0-0.414-0.168-0.789-0.439-1.061l-2-2C6.289,4.168,5.914,4,5.5,4C4.672,4,4,4.672,4,5.5c0,0.414,0.168,0.789,0.439,1.06 L6.439,8.561z M33.5,16h-3c-0.828,0-1.5,0.672-1.5,1.5s0.672,1.5,1.5,1.5h3c0.828,0,1.5-0.672,1.5-1.5S34.328,16,33.5,16z M28.561,26.439C28.289,26.168,27.914,26,27.5,26c-0.828,0-1.5,0.672-1.5,1.5c0,0.414,0.168,0.789,0.439,1.06l2,2 C28.711,30.832,29.086,31,29.5,31c0.828,0,1.5-0.672,1.5-1.5c0-0.414-0.168-0.789-0.439-1.061L28.561,26.439z M17.5,29 c-0.829,0-1.5,0.672-1.5,1.5v3c0,0.828,0.671,1.5,1.5,1.5s1.5-0.672,1.5-1.5v-3C19,29.672,18.329,29,17.5,29z M17.5,7 C11.71,7,7,11.71,7,17.5S11.71,28,17.5,28S28,23.29,28,17.5S23.29,7,17.5,7z M17.5,25c-4.136,0-7.5-3.364-7.5-7.5 c0-4.136,3.364-7.5,7.5-7.5c4.136,0,7.5,3.364,7.5,7.5C25,21.636,21.636,25,17.5,25z"></path></svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="nightIcon" x="0px" y="0px" viewBox="0 0 100 100" style="enable-background:new 0 0 100 100" xml:space="preserve" aria-label="Light mode"><title>Light mode</title><path d="M96.76,66.458c-0.853-0.852-2.15-1.064-3.23-0.534c-6.063,2.991-12.858,4.571-19.655,4.571 C62.022,70.495,50.88,65.88,42.5,57.5C29.043,44.043,25.658,23.536,34.076,6.47c0.532-1.08,0.318-2.379-0.534-3.23 c-0.851-0.852-2.15-1.064-3.23-0.534c-4.918,2.427-9.375,5.619-13.246,9.491c-9.447,9.447-14.65,22.008-14.65,35.369 c0,13.36,5.203,25.921,14.65,35.368s22.008,14.65,35.368,14.65c13.361,0,25.921-5.203,35.369-14.65 c3.872-3.871,7.064-8.328,9.491-13.246C97.826,68.608,97.611,67.309,96.76,66.458z"></path></svg></button><div class="explorer"><button type="button" id="mobile-explorer" class="collapsed hide-until-loaded" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{"path":"Definitions","collapsed":true},{"path":"Definitions/Functions","collapsed":true},{"path":"Definitions/Measure-Theory","collapsed":true},{"path":"Definitions/Measure-Theory/Sigma-Algebra","collapsed":true},{"path":"Definitions/Metric-Spaces","collapsed":true},{"path":"Definitions/Sets","collapsed":true},{"path":"Definitions/Statements","collapsed":true},{"path":"Definitions/Terminology","collapsed":true},{"path":"Definitions/Topological-Spaces","collapsed":true},{"path":"Definitions/Topological-Spaces/Induced","collapsed":true},{"path":"Definitions/Topological-Spaces/Terminologies","collapsed":true},{"path":"Definitions/Vector-Spaces","collapsed":true},{"path":"Lectures","collapsed":true}]" data-mobile="true" aria-controls="explorer-content" aria-expanded="false"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-menu"><line x1="4" x2="20" y1="12" y2="12"></line><line x1="4" x2="20" y1="6" y2="6"></line><line x1="4" x2="20" y1="18" y2="18"></line></svg></button><button type="button" id="desktop-explorer" class="title-button" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{"path":"Definitions","collapsed":true},{"path":"Definitions/Functions","collapsed":true},{"path":"Definitions/Measure-Theory","collapsed":true},{"path":"Definitions/Measure-Theory/Sigma-Algebra","collapsed":true},{"path":"Definitions/Metric-Spaces","collapsed":true},{"path":"Definitions/Sets","collapsed":true},{"path":"Definitions/Statements","collapsed":true},{"path":"Definitions/Terminology","collapsed":true},{"path":"Definitions/Topological-Spaces","collapsed":true},{"path":"Definitions/Topological-Spaces/Induced","collapsed":true},{"path":"Definitions/Topological-Spaces/Terminologies","collapsed":true},{"path":"Definitions/Vector-Spaces","collapsed":true},{"path":"Lectures","collapsed":true}]" data-mobile="false" aria-controls="explorer-content" aria-expanded="true"><h2>Explorer</h2><svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="fold"><polyline points="6 9 12 15 18 9"></polyline></svg></button><div id="explorer-content"><ul class="overflow" id="explorer-ul"><li><div class="folder-outer open"><ul style="padding-left:0;" class="content" data-folderul><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions"><button class="folder-button"><span class="folder-title">Definitions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Functions"><button class="folder-button"><span class="folder-title">Functions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Functions"><li><a href="../Definitions/Functions/Characteristic-Function" data-for="Definitions/Functions/Characteristic-Function">Characteristic Function</a></li><li><a href="../Definitions/Functions/Direct-Product" data-for="Definitions/Functions/Direct-Product">Direct Product</a></li><li><a href="../Definitions/Functions/Inverse-Function" data-for="Definitions/Functions/Inverse-Function">Inverse Function</a></li><li><a href="../Definitions/Functions/Metric" data-for="Definitions/Functions/Metric">Metric</a></li><li><a href="../Definitions/Functions/Power-Set" data-for="Definitions/Functions/Power-Set">Power Set</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory"><button class="folder-button"><span class="folder-title">Measure Theory</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory/Sigma-Algebra"><button class="folder-button"><span class="folder-title">Sigma-Algebra</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory/Sigma-Algebra"><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable">Borel Measurable</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets">Borel Sets</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measurable">Measurable</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Measure" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measure">Measure</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra" data-for="Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra">Sigma-Algebra</a></li></ul></div></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Metric-Spaces"><button class="folder-button"><span class="folder-title">Metric Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Metric-Spaces"><li><a href="../Definitions/Metric-Spaces/Ball" data-for="Definitions/Metric-Spaces/Ball">Ball</a></li><li><a href="../Definitions/Metric-Spaces/Interior-Point" data-for="Definitions/Metric-Spaces/Interior-Point">Interior Point</a></li><li><a href="../Definitions/Metric-Spaces/Metric-Space" data-for="Definitions/Metric-Spaces/Metric-Space">Metric Space</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Sets"><button class="folder-button"><span class="folder-title">Sets</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Sets"><li><a href="../Definitions/Sets/Complex-Numbers" data-for="Definitions/Sets/Complex-Numbers">Complex Numbers</a></li><li><a href="../Definitions/Sets/Open-Cover" data-for="Definitions/Sets/Open-Cover">Open Cover</a></li><li><a href="../Definitions/Sets/Open-Map" data-for="Definitions/Sets/Open-Map">Open Map</a></li><li><a href="../Definitions/Sets/Open-Sets" data-for="Definitions/Sets/Open-Sets">Open Sets</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Statements"><button class="folder-button"><span class="folder-title">Statements</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Statements"><li><a href="../Definitions/Statements/And" data-for="Definitions/Statements/And">And</a></li><li><a href="../Definitions/Statements/Implies" data-for="Definitions/Statements/Implies">Implies</a></li><li><a href="../Definitions/Statements/Not" data-for="Definitions/Statements/Not">Not</a></li><li><a href="../Definitions/Statements/Or" data-for="Definitions/Statements/Or">Or</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Terminology"><button class="folder-button"><span class="folder-title">Terminology</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Terminology"><li><a href="../Definitions/Terminology/Algebraically-Complete" data-for="Definitions/Terminology/Algebraically-Complete">Algebraically Complete</a></li><li><a href="../Definitions/Terminology/Bijective" data-for="Definitions/Terminology/Bijective">Bijective</a></li><li><a href="../Definitions/Terminology/Bounded" data-for="Definitions/Terminology/Bounded">Bounded</a></li><li><a href="../Definitions/Terminology/Countable" data-for="Definitions/Terminology/Countable">Countable</a></li><li><a href="../Definitions/Terminology/Injective" data-for="Definitions/Terminology/Injective">Injective</a></li><li><a href="../Definitions/Terminology/QED" data-for="Definitions/Terminology/QED">QED</a></li><li><a href="../Definitions/Terminology/Surjective" data-for="Definitions/Terminology/Surjective">Surjective</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces"><button class="folder-button"><span class="folder-title">Topological Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Induced"><button class="folder-button"><span class="folder-title">Induced</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Induced"><li><a href="../Definitions/Topological-Spaces/Induced/Initial-Topology" data-for="Definitions/Topological-Spaces/Induced/Initial-Topology">Initial Topology</a></li><li><a href="../Definitions/Topological-Spaces/Induced/Product-Topology" data-for="Definitions/Topological-Spaces/Induced/Product-Topology">Product Topology</a></li><li><a href="../Definitions/Topological-Spaces/Induced/Separating-Points" data-for="Definitions/Topological-Spaces/Induced/Separating-Points">Separating Points</a></li><li><a href="../Definitions/Topological-Spaces/Induced/Weakest-Topology" data-for="Definitions/Topological-Spaces/Induced/Weakest-Topology">Weakest Topology</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Terminologies"><button class="folder-button"><span class="folder-title">Terminologies</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Terminologies"><li><a href="../Definitions/Topological-Spaces/Terminologies/Compact" data-for="Definitions/Topological-Spaces/Terminologies/Compact">Compact</a></li><li><a href="../Definitions/Topological-Spaces/Terminologies/Connected" data-for="Definitions/Topological-Spaces/Terminologies/Connected">Connected</a></li><li><a href="../Definitions/Topological-Spaces/Terminologies/Connected-Component" data-for="Definitions/Topological-Spaces/Terminologies/Connected-Component">Connected Component</a></li></ul></div></li><li><a href="../Definitions/Topological-Spaces/Continuous" data-for="Definitions/Topological-Spaces/Continuous">Continuous</a></li><li><a href="../Definitions/Topological-Spaces/Hausdorff" data-for="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a></li><li><a href="../Definitions/Topological-Spaces/Topological-Space" data-for="Definitions/Topological-Spaces/Topological-Space">Topological Space</a></li><li><a href="../Definitions/Topological-Spaces/Topology" data-for="Definitions/Topological-Spaces/Topology">Topology</a></li><li><a href="../Definitions/Topological-Spaces/Tychonoff-Theorem" data-for="Definitions/Topological-Spaces/Tychonoff-Theorem">Tychonoff Theorem</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Vector-Spaces"><button class="folder-button"><span class="folder-title">Vector Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Vector-Spaces"><li><a href="../Definitions/Vector-Spaces/Complex-Vector-Space" data-for="Definitions/Vector-Spaces/Complex-Vector-Space">Complex Vector Space</a></li><li><a href="../Definitions/Vector-Spaces/Linear-Basis" data-for="Definitions/Vector-Spaces/Linear-Basis">Linear Basis</a></li><li><a href="../Definitions/Vector-Spaces/Normed-Vector-Space" data-for="Definitions/Vector-Spaces/Normed-Vector-Space">Normed Vector Space</a></li><li><a href="../Definitions/Vector-Spaces/Properties-of-a-Vector-Space" data-for="Definitions/Vector-Spaces/Properties-of-a-Vector-Space">Properties of a Vector Space</a></li></ul></div></li><li><a href="../Definitions/Cauchy-Sequence" data-for="Definitions/Cauchy-Sequence">Cauchy Sequence</a></li><li><a href="../Definitions/Cauchy-Schwarz-Inequality" data-for="Definitions/Cauchy-Schwarz-Inequality">Cauchy-Schwarz Inequality</a></li><li><a href="../Definitions/Hilbert-Spaces" data-for="Definitions/Hilbert-Spaces">Hilbert Spaces</a></li><li><a href="../Definitions/Inner-Product" data-for="Definitions/Inner-Product">Inner Product</a></li><li><a href="../Definitions/Least-Upper-Bound-Property" data-for="Definitions/Least-Upper-Bound-Property">Least Upper Bound Property</a></li><li><a href="../Definitions/Linear-Map" data-for="Definitions/Linear-Map">Linear Map</a></li><li><a href="../Definitions/Nets" data-for="Definitions/Nets">Nets</a></li><li><a href="../Definitions/Norm" data-for="Definitions/Norm">Norm</a></li><li><a href="../Definitions/Number-Field" data-for="Definitions/Number-Field">Number Field</a></li><li><a href="../Definitions/Period-of-a-Fraction" data-for="Definitions/Period-of-a-Fraction">Period of a Fraction</a></li><li><a href="../Definitions/Rational-Cauchy-Sequences" data-for="Definitions/Rational-Cauchy-Sequences">Rational Cauchy Sequences</a></li><li><a href="../Definitions/Subcover" data-for="Definitions/Subcover">Subcover</a></li><li><a href="../Definitions/Subnet" data-for="Definitions/Subnet">Subnet</a></li></ul></div></li><li><div class="folder-outer "><ul style="padding-left:0;" class="content" data-folderul></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Lectures"><button class="folder-button"><span class="folder-title">Lectures</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Lectures"><li><a href="../Lectures/Lecture-1---1.1-Sets-and-Numbers" data-for="Lectures/Lecture-1---1.1-Sets-and-Numbers">Lecture 1 - 1.1 Sets and Numbers</a></li><li><a href="../Lectures/Lecture-2" data-for="Lectures/Lecture-2">Lecture 2</a></li><li><a href="../Lectures/Lecture-3" data-for="Lectures/Lecture-3">Lecture 3</a></li><li><a href="../Lectures/Lecture-4---1.2-Metric-Spaces" data-for="Lectures/Lecture-4---1.2-Metric-Spaces">Lecture 4 - 1.2 Metric Spaces</a></li><li><a href="../Lectures/Lecture-5" data-for="Lectures/Lecture-5">Lecture 5</a></li><li><a href="../Lectures/Lecture-6---2.1-Topology" data-for="Lectures/Lecture-6---2.1-Topology">Lecture 6 - 2.1 Topology</a></li><li><a href="../Lectures/Lecture-7" data-for="Lectures/Lecture-7">Lecture 7</a></li><li><a href="../Lectures/Lecture-8" data-for="Lectures/Lecture-8">Lecture 8</a></li><li><a href="../Lectures/Lecture-11" data-for="Lectures/Lecture-11">Lecture 11</a></li><li><a href="../Lectures/Lecture-12---Induced-Topologies" data-for="Lectures/Lecture-12---Induced-Topologies">Lecture 12 - Induced Topologies</a></li><li><a href="../Lectures/Lecture-13---Measure-Theory" data-for="Lectures/Lecture-13---Measure-Theory">Lecture 13 - Measure Theory</a></li></ul></div></li></ul></div></li><li id="explorer-end"></li></ul></div></div></div><div class="center"><div class="page-header"><div class="popover-hint"><nav class="breadcrumb-container" aria-label="breadcrumbs"><div class="breadcrumb-element"><a href="../">Home</a><p> ❯ </p></div><div class="breadcrumb-element"><a href="../Lectures/">Lectures</a><p> ❯ </p></div><div class="breadcrumb-element"><a href>Lecture 11</a></div></nav><h1 class="article-title">Lecture 11</h1><p show-comma="true" class="content-meta"><time datetime="2025-02-13T00:00:00.000Z">13 Feb 2025</time><span>5 min read</span></p></div></div><article class="popover-hint"><p>Last lecture talked about <a href="../Definitions/Nets" class="internal" data-slug="Definitions/Nets">Nets</a></p>
|
||
<h1 id="proposition">Proposition<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proposition" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
|
||
<p>A <a href="../Definitions/Topological-Spaces/Topological-Space" class="internal alias" data-slug="Definitions/Topological-Spaces/Topological-Space">topological space</a> is <a href="../Definitions/Topological-Spaces/Hausdorff" class="internal" data-slug="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.549em;vertical-align:-0.024em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span></span></span></span> each <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> converges to at most one point.</p>
|
||
<h2 id="proof">Proof<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proof" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<h3 id="rightarrow"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">⇒</span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#rightarrow" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<p>“Easy”<br/>
|
||
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-10.57.31.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
|
||
<h3 id="leftarrow"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">⇐</span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#leftarrow" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<p>say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>, therefore cannot be separated by disjoint neighbourhoods.</p>
|
||
<p>By the axiom of choice, pick <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8943em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>, where <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> are neighbourhoods of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> respectively. Consider the index set of pairs <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> if <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
|
||
<p>This is a “ufos”, and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1052em;vertical-align:-0.3552em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7858em;vertical-align:-0.3552em;"></span><span class="mord mathnormal">x</span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> which is a contradiction.</p>
|
||
<p><img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-11.02.27.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.248em;vertical-align:-1.7089em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span style="top:-1.3185em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="mbin mtight">∩</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span class="svg-align" style="top:-1.9968em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0032em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.7089em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.4056em;vertical-align:-1.6037em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mord">∀</span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-1.4237em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mrel mtight">⟹</span><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mord mathnormal mtight">A</span><span class="mrel mtight">⊂</span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6828em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mbin mtight">∩</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mrel mtight">⊂</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6828em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.6037em;"><span></span></span></span></span></span></span></span></span></p>
|
||
<h1 id="proposition---convergence-in-topological-space">Proposition - Convergence in Topological Space<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proposition---convergence-in-topological-space" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span> <a href="../Definitions/Topological-Spaces/Topological-Space" class="internal alias" data-slug="Definitions/Topological-Spaces/Topological-Space">topological spaces</a> with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span>.</p>
|
||
<p>Then:<br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span> is continuous at <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.549em;vertical-align:-0.024em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">∀</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span>.<br/>
|
||
(<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">∀</span></span></span></span> neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">∃</span></span></span></span> neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.436em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.186em;"><span style="top:-3.1871em;"><span class="pstrut" style="height:3.1871em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1871em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel">⊂</span></span></span><span class="svg-align" style="top:-3.6391em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
|
||
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
|
||
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
|
||
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
|
||
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
|
||
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
|
||
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
|
||
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
|
||
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
|
||
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0391em;"><span></span></span></span></span></span></span><span style="top:-4.7492em;"><span class="pstrut" style="height:3.1871em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="mrel mtight">⊂</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0391em;"><span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> )</p>
|
||
<h2 id="proof-1">Proof<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proof-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<h3 id="rightarrow-1"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">⇒</span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#rightarrow-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<p>Suppose <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> and that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> is a neighbourhood of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>. Then there <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">∃</span></span></span></span> a neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span></span></span></span> (<a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a>) will eventually be in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)}</span></span></span></span> will eventually be in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>, so that means <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</p>
|
||
<h3 id="leftarrow-1"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">⇐</span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#leftarrow-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<p>(Going for a proof by contradiction)</p>
|
||
<p>Say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> is a neighbourhood of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> such that every neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> intersects <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∖</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> belongs to the closure of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∖</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span>. By previous proposition there <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">∃</span></span></span></span> <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∖</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span>.</p>
|
||
<p><img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-11.26.08.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7184em;vertical-align:-0.024em;"></span><span class="mord text"><span class="mord">to </span></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">circle</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9073em;vertical-align:-0.024em;"></span><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8833em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span><span style="top:-3.8033em;"><span class="pstrut" style="height:3em;"></span><span class="overline-line" style="border-bottom-width:0.04em;"></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">←</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span></p>
|
||
<h2 id="definition">Definition<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#definition" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<p>A <strong><a href="../Definitions/Subnet" class="internal alias" data-slug="Definitions/Subnet">subnet</a></strong> of a <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> is a <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> and a map <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span></span></span></span> and such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord">∀</span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord">∃</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span></span></span> with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9463em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord">∀</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.854em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span></span></span>.</p>
|
||
<h2 id="theorem">Theorem<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#theorem" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<p>A space is <a href="../Definitions/Topological-Spaces/Terminologies/Compact" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Compact">compact</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.549em;vertical-align:-0.024em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span></span></span></span> every net has a converging subnet.</p>
|
||
<h3 id="examples">Examples<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#examples" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<blockquote class="callout example" data-callout="example">
|
||
<div class="callout-title">
|
||
<div class="callout-icon"></div>
|
||
<div class="callout-title-inner"><p>Example: Illustrates <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">⇒</span></span></span></span></p></div>
|
||
|
||
</div>
|
||
<div class="callout-content">
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span><br/>
|
||
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-12.01.57.excalidraw.dark.svg" width="auto" height="auto" alt/><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">⟨</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span></p>
|
||
</div>
|
||
</blockquote>
|
||
<blockquote class="callout example" data-callout="example">
|
||
<div class="callout-title">
|
||
<div class="callout-icon"></div>
|
||
<div class="callout-title-inner"><p>Example: Illustrates <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">⇒</span></span></span></span></p></div>
|
||
|
||
</div>
|
||
<div class="callout-content">
|
||
<p>Consider the <a href="../Definitions/Topological-Spaces/Terminologies/Compact" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Compact">compact</a> space <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>, say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]}</span></span></span></span><br/>
|
||
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-12.07.00.excalidraw.dark.svg" width="auto" height="auto" alt/><br/>
|
||
<strong>Construct subsequence:</strong><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> any <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span> in the half with infinitely many <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>s.<br/>
|
||
Pick <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> to be in the half with infinitely many <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>s.</p>
|
||
<p>Get subsequence <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span></span></span></span> contained in more and more narrow intervals. So <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span></span></span></span> will be <a href="../Definitions/Cauchy-Sequence" class="internal alias" data-slug="Definitions/Cauchy-Sequence">cauchy</a> incomplete <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>, so it converges.</p>
|
||
<blockquote class="callout note" data-callout="note">
|
||
<div class="callout-title">
|
||
<div class="callout-icon"></div>
|
||
<div class="callout-title-inner"><p> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4702em;vertical-align:-1.7202em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-1.4159em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">closed</span></span><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mrel mtight">⟹</span><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight" style="margin-right:0.01968em;">pl</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">e</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.7202em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1591em;vertical-align:-1.4702em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span style="top:-1.6659em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mrel mtight">→</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord text mtight"><span class="mord mtight">complete</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span class="svg-align" style="top:-2.352em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.648em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4702em;"><span></span></span></span></span></span></span></span></span></p></div>
|
||
|
||
</div>
|
||
</blockquote>
|
||
</div>
|
||
</blockquote>
|
||
<h1 id="exercises">Exercises<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#exercises" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
|
||
<blockquote class="callout note" data-callout="note">
|
||
<div class="callout-title">
|
||
<div class="callout-icon"></div>
|
||
<div class="callout-title-inner"><p>Note</p></div>
|
||
|
||
</div>
|
||
<div class="callout-content">
|
||
<p>Question numbering is probably not the same as the ones from the exercises on Canvas. The numbering was done in order they appeared in the lecture.</p>
|
||
</div>
|
||
</blockquote>
|
||
<h2 id="question-1">Question 1<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">contiuous</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">continuous</span></span></span></span></span><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9344em;vertical-align:-0.011em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9234em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">g</span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
|
||
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
|
||
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
|
||
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
|
||
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
|
||
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
|
||
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1191em;vertical-align:-0.011em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1081em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
|
||
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
|
||
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
|
||
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
|
||
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
|
||
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
|
||
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span> and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.158em;vertical-align:-0.011em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.147em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="mbin mtight">∘</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">g</span><span class="mclose mtight">)</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">x</span><span class="mclose mtight">)</span><span class="mrel mtight">=</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">g</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">x</span><span class="mclose mtight">))</span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
|
||
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
|
||
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
|
||
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
|
||
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
|
||
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
|
||
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> <a href="../Definitions/Sets/Open-Sets" class="internal alias" data-slug="Definitions/Sets/Open-Sets">open</a> in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span><br/>
|
||
for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>.</p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span><br/>
|
||
for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span></p>
|
||
<p>Is <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> when <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>?</p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.4404em;vertical-align:-1.5763em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-1.4237em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5763em;"><span></span></span></span></span></span><span class="mclose">)</span></span></span></span></p>
|
||
<p>Take <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3581em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1081em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">claim</span></span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMinYMin slice"><path d="M400000 241H110l3-3c68.7-52.7 113.7-120
|
||
135-202 4-14.7 6-23 6-25 0-7.3-7-11-21-11-8 0-13.2.8-15.5 2.5-2.3 1.7-4.2 5.8
|
||
-5.5 12.5-1.3 4.7-2.7 10.3-4 17-12 48.7-34.8 92-68.5 130S65.3 228.3 18 247
|
||
c-10 4-16 7.7-18 11 0 8.7 6 14.3 18 17 47.3 18.7 87.8 47 121.5 85S196 441.3 208
|
||
490c.7 2 1.3 5 2 9s1.2 6.7 1.5 8c.3 1.3 1 3.3 2 6s2.2 4.5 3.5 5.5c1.3 1 3.3
|
||
1.8 6 2.5s6 1 10 1c14 0 21-3.7 21-11 0-2-2-10.3-6-25-20-79.3-65-146.7-135-202
|
||
l-3-3h399890zM100 241v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">true for any subset of </span></span><span class="mord mathnormal">A</span><span class="mord text"><span class="mord"> of </span></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> since <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span>, as <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span> is continuous.</p>
|
||
<p>But then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> as <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span></span></span></span> is continuous. Hence <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span></span></span></span> is continuous.</p>
|
||
<h3 id="claim">Claim:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#claim" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∀</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>.</p>
|
||
<h3 id="proof-2">Proof:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proof-2" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<p>Say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span>, or <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span></span></span></span>.<br/>
|
||
If <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span></span></span></span>, then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>.</p>
|
||
<h3 id="alternatively">Alternatively:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#alternatively" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
|
||
<p>Say we have <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.951em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.701em;"><span style="top:-3.0149em;"><span class="pstrut" style="height:3.0149em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.0149em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel">=</span></span></span><span class="svg-align" style="top:-3.4669em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
|
||
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
|
||
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
|
||
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
|
||
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
|
||
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
|
||
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
|
||
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
|
||
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
|
||
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-4.2297em;"><span class="pstrut" style="height:3.0149em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">Definition of </span></span><span class="mord mtight">∘</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">))</span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.6164em;"><span style="top:-3.0149em;"><span class="pstrut" style="height:3.0149em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.0149em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel">=</span></span></span><span class="svg-align" style="top:-3.4669em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
|
||
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
|
||
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
|
||
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
|
||
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
|
||
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
|
||
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
|
||
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
|
||
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
|
||
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-4.3298em;"><span class="pstrut" style="height:3.0149em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight">→</span><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span></span></span></span> (Note: I’m assuming the <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mop">lim</span></span></span></span> is <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord">∞</span></span></span></span>, as it was not defined in the lecture) <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">→</span><span class="mord mtight">∞</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∘</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>.</p>
|
||
<h2 id="question-2">Question 2<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-2" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≃</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.3402em;vertical-align:-0.1944em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:2.1458em;"><span style="top:-3.3313em;"><span class="pstrut" style="height:3.3313em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.3313em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span><span class="svg-align" style="top:-3.7833em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
|
||
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
|
||
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
|
||
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
|
||
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
|
||
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
|
||
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
|
||
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
|
||
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
|
||
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-4.9988em;"><span class="pstrut" style="height:3.3313em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">Compact</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span></span><span class="base"><span class="strut" style="height:0.4637em;"></span><span class="mrel">≃</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1513em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:2.1513em;"><span style="top:-3.3369em;"><span class="pstrut" style="height:3.3369em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.3369em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span><span class="svg-align" style="top:-3.7889em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
|
||
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
|
||
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
|
||
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
|
||
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
|
||
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
|
||
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
|
||
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
|
||
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
|
||
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-5.0099em;"><span class="pstrut" style="height:3.3369em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">Not compact</span></span></span></span></span></span></span></span></span></span></span></span><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.522em;vertical-align:-0.011em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">↦</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5053em;vertical-align:-2.8164em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span style="top:-1.627em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4637em;"><span style="top:-1.7127em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mtight">t</span><span class="mtight">a</span><span class="mtight">n</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4637em;"><span class="svg-align" style="top:-2.352em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy mtight" style="height:0.548em;min-width:1.6em;"><span class="brace-left mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel">≃</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.648em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2873em;"><span></span></span></span></span></span><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-1.318em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mrel mtight">≃</span><span class="mopen mtight">⟨</span><span class="mspace mtight" style="margin-right:0.2453em;"></span><span class="mord mtight">−</span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8176em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">2</span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mpunct mtight">,</span><span class="mspace mtight" style="margin-right:0.2453em;"></span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8176em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">2</span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mspace mtight" style="margin-right:0.2453em;"></span><span class="mclose mtight">⟩</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy mtight" style="height:0.548em;min-width:1.6em;"><span class="brace-left mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">⟨</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">⟩</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.062em;"><span></span></span></span></span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span class="svg-align" style="top:-2.352em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
|
||
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
|
||
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
|
||
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
|
||
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
|
||
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
|
||
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
|
||
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
|
||
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
|
||
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.648em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.8164em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3976em;vertical-align:-0.345em;"></span><span class="mopen">⟨</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">⟩</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0526em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mop mtight"><span class="mtight">t</span><span class="mtight">a</span><span class="mtight">n</span></span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
|
||
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
|
||
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
|
||
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
|
||
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
|
||
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
|
||
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">⟨</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">−</span><span class="mord">∞</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∞</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">⟩</span></span></span></span><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span></span><span class="base"><span class="strut" style="height:0.4637em;"></span><span class="mrel">≃</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> by compactness argument.<br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is ‘more <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a>’ than <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>.</p>
|
||
<h2 id="question-3">Question 3<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-3" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<p>Why does there not exist a continuous injection for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>?</p>
|
||
<p>What happens then if you take the image <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>?<br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span> is both compact and <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span> for some <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>.</p>
|
||
<p>Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span> is continuous and <a href="../Definitions/Terminology/Bijective" class="internal alias" data-slug="Definitions/Terminology/Bijective">bijective</a> (as nothing is excluded from the image).</p>
|
||
<p>Since both <a href="../Definitions/Topological-Spaces/Topological-Space" class="internal alias" data-slug="Definitions/Topological-Spaces/Topological-Space">spaces</a> (Note: not sure if it is the correct link) are <a href="../Definitions/Topological-Spaces/Terminologies/Compact" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Compact">compact</a> and <a href="../Definitions/Topological-Spaces/Hausdorff" class="internal" data-slug="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a>, then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span> is also continuous, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≃</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>. But removing one point leaves <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a>, but not <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>. So this is a contradiction.</p>
|
||
<h2 id="question-4">Question 4<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-4" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
|
||
<p>Show that the <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a> components of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊂</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span> consists of single points, and that one of these are <a href="../Definitions/Sets/Open-Sets" class="internal alias" data-slug="Definitions/Sets/Open-Sets">open</a>.</p>
|
||
<p><a href="../Definitions/Topological-Spaces/Topology" class="internal" data-slug="Definitions/Topological-Spaces/Topology">Topology</a> on <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mord text"><span class="mord"> open in </span></span><span class="mord mathbb">R</span><span class="mclose">}</span></span></span></span></p>
|
||
<p><img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-14.01.44.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span></p>
|
||
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">p</span><span class="mclose">}</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span></span></span></span><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">⟨</span><span class="mord">−</span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">p</span><span class="mclose">⟩</span></span></span></span> contains more points than <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span><br/>
|
||
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-14.06.25.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
|
||
<p>In the graph above: <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathbb">R</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∖</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span></span></span></span>.</p></article><hr/><div class="page-footer"></div></div><div class="right sidebar"><div class="graph"><h3>Graph View</h3><div class="graph-outer"><div id="graph-container" data-cfg="{"drag":true,"zoom":true,"depth":1,"scale":1.1,"repelForce":0.5,"centerForce":0.3,"linkDistance":30,"fontSize":0.6,"opacityScale":1,"showTags":true,"removeTags":[],"focusOnHover":false,"enableRadial":false}"></div><button id="global-graph-icon" aria-label="Global Graph"><svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 55 55" fill="currentColor" xml:space="preserve"><path d="M49,0c-3.309,0-6,2.691-6,6c0,1.035,0.263,2.009,0.726,2.86l-9.829,9.829C32.542,17.634,30.846,17,29,17
|
||
s-3.542,0.634-4.898,1.688l-7.669-7.669C16.785,10.424,17,9.74,17,9c0-2.206-1.794-4-4-4S9,6.794,9,9s1.794,4,4,4
|
||
c0.74,0,1.424-0.215,2.019-0.567l7.669,7.669C21.634,21.458,21,23.154,21,25s0.634,3.542,1.688,4.897L10.024,42.562
|
||
C8.958,41.595,7.549,41,6,41c-3.309,0-6,2.691-6,6s2.691,6,6,6s6-2.691,6-6c0-1.035-0.263-2.009-0.726-2.86l12.829-12.829
|
||
c1.106,0.86,2.44,1.436,3.898,1.619v10.16c-2.833,0.478-5,2.942-5,5.91c0,3.309,2.691,6,6,6s6-2.691,6-6c0-2.967-2.167-5.431-5-5.91
|
||
v-10.16c1.458-0.183,2.792-0.759,3.898-1.619l7.669,7.669C41.215,39.576,41,40.26,41,41c0,2.206,1.794,4,4,4s4-1.794,4-4
|
||
s-1.794-4-4-4c-0.74,0-1.424,0.215-2.019,0.567l-7.669-7.669C36.366,28.542,37,26.846,37,25s-0.634-3.542-1.688-4.897l9.665-9.665
|
||
C46.042,11.405,47.451,12,49,12c3.309,0,6-2.691,6-6S52.309,0,49,0z M11,9c0-1.103,0.897-2,2-2s2,0.897,2,2s-0.897,2-2,2
|
||
S11,10.103,11,9z M6,51c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S8.206,51,6,51z M33,49c0,2.206-1.794,4-4,4s-4-1.794-4-4
|
||
s1.794-4,4-4S33,46.794,33,49z M29,31c-3.309,0-6-2.691-6-6s2.691-6,6-6s6,2.691,6,6S32.309,31,29,31z M47,41c0,1.103-0.897,2-2,2
|
||
s-2-0.897-2-2s0.897-2,2-2S47,39.897,47,41z M49,10c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S51.206,10,49,10z"></path></svg></button></div><div id="global-graph-outer"><div id="global-graph-container" data-cfg="{"drag":true,"zoom":true,"depth":-1,"scale":0.9,"repelForce":0.5,"centerForce":0.3,"linkDistance":30,"fontSize":0.6,"opacityScale":1,"showTags":true,"removeTags":[],"focusOnHover":true,"enableRadial":true}"></div></div></div><div class="toc desktop-only"><button type="button" id="toc" class aria-controls="toc-content" aria-expanded="true"><h3>Table of Contents</h3><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="fold"><polyline points="6 9 12 15 18 9"></polyline></svg></button><div id="toc-content" class><ul class="overflow"><li class="depth-0"><a href="#proposition" data-for="proposition">Proposition</a></li><li class="depth-1"><a href="#proof" data-for="proof">Proof</a></li><li class="depth-2"><a href="#rightarrow" data-for="rightarrow">\Rightarrow:</a></li><li class="depth-2"><a href="#leftarrow" data-for="leftarrow">\Leftarrow:</a></li><li class="depth-0"><a href="#proposition---convergence-in-topological-space" data-for="proposition---convergence-in-topological-space">Proposition - Convergence in Topological Space</a></li><li class="depth-1"><a href="#proof-1" data-for="proof-1">Proof</a></li><li class="depth-2"><a href="#rightarrow-1" data-for="rightarrow-1">\Rightarrow:</a></li><li class="depth-2"><a href="#leftarrow-1" data-for="leftarrow-1">\Leftarrow:</a></li><li class="depth-1"><a href="#definition" data-for="definition">Definition</a></li><li class="depth-1"><a href="#theorem" data-for="theorem">Theorem</a></li><li class="depth-2"><a href="#examples" data-for="examples">Examples</a></li><li class="depth-0"><a href="#exercises" data-for="exercises">Exercises</a></li><li class="depth-1"><a href="#question-1" data-for="question-1">Question 1</a></li><li class="depth-2"><a href="#claim" data-for="claim">Claim:</a></li><li class="depth-2"><a href="#proof-2" data-for="proof-2">Proof:</a></li><li class="depth-2"><a href="#alternatively" data-for="alternatively">Alternatively:</a></li><li class="depth-1"><a href="#question-2" data-for="question-2">Question 2</a></li><li class="depth-1"><a href="#question-3" data-for="question-3">Question 3</a></li><li class="depth-1"><a href="#question-4" data-for="question-4">Question 4</a></li></ul></div></div></div><footer class><p>Created with <a href="https://quartz.jzhao.xyz/">Quartz v4.4.0</a> © 2025</p><ul><li><a href="https://git.anthonyberg.io/smyalygames/ACIT4330-Page">Gitea</a></li></ul></footer></div></div></body><script type="application/javascript">function c(){let t=this.parentElement;t.classList.toggle("is-collapsed");let l=t.classList.contains("is-collapsed")?this.scrollHeight:t.scrollHeight;t.style.maxHeight=l+"px";let o=t,e=t.parentElement;for(;e;){if(!e.classList.contains("callout"))return;let n=e.classList.contains("is-collapsed")?e.scrollHeight:e.scrollHeight+o.scrollHeight;e.style.maxHeight=n+"px",o=e,e=e.parentElement}}function i(){let t=document.getElementsByClassName("callout is-collapsible");for(let s of t){let l=s.firstElementChild;if(l){l.addEventListener("click",c),window.addCleanup(()=>l.removeEventListener("click",c));let e=s.classList.contains("is-collapsed")?l.scrollHeight:s.scrollHeight;s.style.maxHeight=e+"px"}}}document.addEventListener("nav",i);window.addEventListener("resize",i);
|
||
</script><script src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/copy-tex.min.js" type="application/javascript"></script><script type="application/javascript">
|
||
const socket = new WebSocket('ws://localhost:3001')
|
||
// reload(true) ensures resources like images and scripts are fetched again in firefox
|
||
socket.addEventListener('message', () => document.location.reload(true))
|
||
</script><script src="../postscript.js" type="module"></script></html> |