generated from smyalygames/quartz
20 lines
36 KiB
HTML
20 lines
36 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><head><title>Inverse Function</title><meta charset="utf-8"/><link rel="preconnect" href="https://fonts.googleapis.com"/><link rel="preconnect" href="https://fonts.gstatic.com"/><link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=IBM Plex Mono&family=Schibsted Grotesk:wght@400;700&family=Source Sans Pro:ital,wght@0,400;0,600;1,400;1,600&display=swap"/><link rel="preconnect" href="https://cdnjs.cloudflare.com" crossorigin="anonymous"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><meta name="og:site_name" content="ACIT4330 Lecture Notes"/><meta property="og:title" content="Inverse Function"/><meta property="og:type" content="website"/><meta name="twitter:card" content="summary_large_image"/><meta name="twitter:title" content="Inverse Function"/><meta name="twitter:description" content="f^{-1} : Y \to X such that ff^{-1} = I_{x} \; \land f^{-1}f = I_{y} \exists f^{-1} \iff f \; \text{bijective}."/><meta property="og:description" content="f^{-1} : Y \to X such that ff^{-1} = I_{x} \; \land f^{-1}f = I_{y} \exists f^{-1} \iff f \; \text{bijective}."/><meta property="og:image:type" content="image/webp"/><meta property="og:image:alt" content="f^{-1} : Y \to X such that ff^{-1} = I_{x} \; \land f^{-1}f = I_{y} \exists f^{-1} \iff f \; \text{bijective}."/><meta property="og:image:width" content="1200"/><meta property="og:image:height" content="630"/><meta property="og:image:url" content="https://https://acit4330.pages.anthonyberg.io//static/og-image.png"/><meta name="twitter:image" content="https://https://acit4330.pages.anthonyberg.io//static/og-image.png"/><meta property="og:image" content="https://https://acit4330.pages.anthonyberg.io//static/og-image.png"/><meta property="twitter:domain" content="https://acit4330.pages.anthonyberg.io/"/><meta property="og:url" content="https://https//acit4330.pages.anthonyberg.io/Definitions/Functions/Inverse-Function"/><meta property="twitter:url" content="https://https//acit4330.pages.anthonyberg.io/Definitions/Functions/Inverse-Function"/><link rel="icon" href="../../static/icon.png"/><meta name="description" content="f^{-1} : Y \to X such that ff^{-1} = I_{x} \; \land f^{-1}f = I_{y} \exists f^{-1} \iff f \; \text{bijective}."/><meta name="generator" content="Quartz"/><link href="../../index.css" rel="stylesheet" type="text/css" spa-preserve/><link href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" rel="stylesheet" type="text/css" spa-preserve/><script src="../../prescript.js" type="application/javascript" spa-preserve></script><script type="application/javascript" spa-preserve>const fetchData = fetch("../../static/contentIndex.json").then(data => data.json())</script></head><body data-slug="Definitions/Functions/Inverse-Function"><div id="quartz-root" class="page"><div id="quartz-body"><div class="left sidebar"><h2 class="page-title"><a href="../..">ACIT4330 Lecture Notes</a></h2><div class="spacer mobile-only"></div><div class="search"><button class="search-button" id="search-button"><p>Search</p><svg role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 19.9 19.7"><title>Search</title><g class="search-path" fill="none"><path stroke-linecap="square" d="M18.5 18.3l-5.4-5.4"></path><circle cx="8" cy="8" r="7"></circle></g></svg></button><div id="search-container"><div id="search-space"><input autocomplete="off" id="search-bar" name="search" type="text" aria-label="Search for something" placeholder="Search for something"/><div id="search-layout" data-preview="true"></div></div></div></div><button class="darkmode" id="darkmode"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="dayIcon" x="0px" y="0px" viewBox="0 0 35 35" style="enable-background:new 0 0 35 35" xml:space="preserve" aria-label="Dark mode"><title>Dark mode</title><path d="M6,17.5C6,16.672,5.328,16,4.5,16h-3C0.672,16,0,16.672,0,17.5 S0.672,19,1.5,19h3C5.328,19,6,18.328,6,17.5z M7.5,26c-0.414,0-0.789,0.168-1.061,0.439l-2,2C4.168,28.711,4,29.086,4,29.5 C4,30.328,4.671,31,5.5,31c0.414,0,0.789-0.168,1.06-0.44l2-2C8.832,28.289,9,27.914,9,27.5C9,26.672,8.329,26,7.5,26z M17.5,6 C18.329,6,19,5.328,19,4.5v-3C19,0.672,18.329,0,17.5,0S16,0.672,16,1.5v3C16,5.328,16.671,6,17.5,6z M27.5,9 c0.414,0,0.789-0.168,1.06-0.439l2-2C30.832,6.289,31,5.914,31,5.5C31,4.672,30.329,4,29.5,4c-0.414,0-0.789,0.168-1.061,0.44 l-2,2C26.168,6.711,26,7.086,26,7.5C26,8.328,26.671,9,27.5,9z M6.439,8.561C6.711,8.832,7.086,9,7.5,9C8.328,9,9,8.328,9,7.5 c0-0.414-0.168-0.789-0.439-1.061l-2-2C6.289,4.168,5.914,4,5.5,4C4.672,4,4,4.672,4,5.5c0,0.414,0.168,0.789,0.439,1.06 L6.439,8.561z M33.5,16h-3c-0.828,0-1.5,0.672-1.5,1.5s0.672,1.5,1.5,1.5h3c0.828,0,1.5-0.672,1.5-1.5S34.328,16,33.5,16z M28.561,26.439C28.289,26.168,27.914,26,27.5,26c-0.828,0-1.5,0.672-1.5,1.5c0,0.414,0.168,0.789,0.439,1.06l2,2 C28.711,30.832,29.086,31,29.5,31c0.828,0,1.5-0.672,1.5-1.5c0-0.414-0.168-0.789-0.439-1.061L28.561,26.439z M17.5,29 c-0.829,0-1.5,0.672-1.5,1.5v3c0,0.828,0.671,1.5,1.5,1.5s1.5-0.672,1.5-1.5v-3C19,29.672,18.329,29,17.5,29z M17.5,7 C11.71,7,7,11.71,7,17.5S11.71,28,17.5,28S28,23.29,28,17.5S23.29,7,17.5,7z M17.5,25c-4.136,0-7.5-3.364-7.5-7.5 c0-4.136,3.364-7.5,7.5-7.5c4.136,0,7.5,3.364,7.5,7.5C25,21.636,21.636,25,17.5,25z"></path></svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="nightIcon" x="0px" y="0px" viewBox="0 0 100 100" style="enable-background:new 0 0 100 100" xml:space="preserve" aria-label="Light mode"><title>Light mode</title><path d="M96.76,66.458c-0.853-0.852-2.15-1.064-3.23-0.534c-6.063,2.991-12.858,4.571-19.655,4.571 C62.022,70.495,50.88,65.88,42.5,57.5C29.043,44.043,25.658,23.536,34.076,6.47c0.532-1.08,0.318-2.379-0.534-3.23 c-0.851-0.852-2.15-1.064-3.23-0.534c-4.918,2.427-9.375,5.619-13.246,9.491c-9.447,9.447-14.65,22.008-14.65,35.369 c0,13.36,5.203,25.921,14.65,35.368s22.008,14.65,35.368,14.65c13.361,0,25.921-5.203,35.369-14.65 c3.872-3.871,7.064-8.328,9.491-13.246C97.826,68.608,97.611,67.309,96.76,66.458z"></path></svg></button><div class="explorer"><button type="button" id="mobile-explorer" class="collapsed hide-until-loaded" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{"path":"Definitions","collapsed":true},{"path":"Definitions/Functions","collapsed":true},{"path":"Definitions/Measure-Theory","collapsed":true},{"path":"Definitions/Measure-Theory/Sigma-Algebra","collapsed":true},{"path":"Definitions/Metric-Spaces","collapsed":true},{"path":"Definitions/Sets","collapsed":true},{"path":"Definitions/Statements","collapsed":true},{"path":"Definitions/Terminology","collapsed":true},{"path":"Definitions/Topological-Spaces","collapsed":true},{"path":"Definitions/Topological-Spaces/Induced","collapsed":true},{"path":"Definitions/Topological-Spaces/Terminologies","collapsed":true},{"path":"Definitions/Vector-Spaces","collapsed":true},{"path":"Lectures","collapsed":true}]" data-mobile="true" aria-controls="explorer-content" aria-expanded="false"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-menu"><line x1="4" x2="20" y1="12" y2="12"></line><line x1="4" x2="20" y1="6" y2="6"></line><line x1="4" x2="20" y1="18" y2="18"></line></svg></button><button type="button" id="desktop-explorer" class="title-button" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{"path":"Definitions","collapsed":true},{"path":"Definitions/Functions","collapsed":true},{"path":"Definitions/Measure-Theory","collapsed":true},{"path":"Definitions/Measure-Theory/Sigma-Algebra","collapsed":true},{"path":"Definitions/Metric-Spaces","collapsed":true},{"path":"Definitions/Sets","collapsed":true},{"path":"Definitions/Statements","collapsed":true},{"path":"Definitions/Terminology","collapsed":true},{"path":"Definitions/Topological-Spaces","collapsed":true},{"path":"Definitions/Topological-Spaces/Induced","collapsed":true},{"path":"Definitions/Topological-Spaces/Terminologies","collapsed":true},{"path":"Definitions/Vector-Spaces","collapsed":true},{"path":"Lectures","collapsed":true}]" data-mobile="false" aria-controls="explorer-content" aria-expanded="true"><h2>Explorer</h2><svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="fold"><polyline points="6 9 12 15 18 9"></polyline></svg></button><div id="explorer-content"><ul class="overflow" id="explorer-ul"><li><div class="folder-outer open"><ul style="padding-left:0;" class="content" data-folderul><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions"><button class="folder-button"><span class="folder-title">Definitions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Functions"><button class="folder-button"><span class="folder-title">Functions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Functions"><li><a href="../../Definitions/Functions/Characteristic-Function" data-for="Definitions/Functions/Characteristic-Function">Characteristic Function</a></li><li><a href="../../Definitions/Functions/Direct-Product" data-for="Definitions/Functions/Direct-Product">Direct Product</a></li><li><a href="../../Definitions/Functions/Inverse-Function" data-for="Definitions/Functions/Inverse-Function">Inverse Function</a></li><li><a href="../../Definitions/Functions/Metric" data-for="Definitions/Functions/Metric">Metric</a></li><li><a href="../../Definitions/Functions/Power-Set" data-for="Definitions/Functions/Power-Set">Power Set</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory"><button class="folder-button"><span class="folder-title">Measure Theory</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory/Sigma-Algebra"><button class="folder-button"><span class="folder-title">Sigma-Algebra</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory/Sigma-Algebra"><li><a href="../../Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable">Borel Measurable</a></li><li><a href="../../Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets">Borel Sets</a></li><li><a href="../../Definitions/Measure-Theory/Sigma-Algebra/Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measurable">Measurable</a></li><li><a href="../../Definitions/Measure-Theory/Sigma-Algebra/Measure" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measure">Measure</a></li><li><a href="../../Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra" data-for="Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra">Sigma-Algebra</a></li></ul></div></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Metric-Spaces"><button class="folder-button"><span class="folder-title">Metric Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Metric-Spaces"><li><a href="../../Definitions/Metric-Spaces/Ball" data-for="Definitions/Metric-Spaces/Ball">Ball</a></li><li><a href="../../Definitions/Metric-Spaces/Interior-Point" data-for="Definitions/Metric-Spaces/Interior-Point">Interior Point</a></li><li><a href="../../Definitions/Metric-Spaces/Metric-Space" data-for="Definitions/Metric-Spaces/Metric-Space">Metric Space</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Sets"><button class="folder-button"><span class="folder-title">Sets</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Sets"><li><a href="../../Definitions/Sets/Complex-Numbers" data-for="Definitions/Sets/Complex-Numbers">Complex Numbers</a></li><li><a href="../../Definitions/Sets/Open-Cover" data-for="Definitions/Sets/Open-Cover">Open Cover</a></li><li><a href="../../Definitions/Sets/Open-Map" data-for="Definitions/Sets/Open-Map">Open Map</a></li><li><a href="../../Definitions/Sets/Open-Sets" data-for="Definitions/Sets/Open-Sets">Open Sets</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Statements"><button class="folder-button"><span class="folder-title">Statements</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Statements"><li><a href="../../Definitions/Statements/And" data-for="Definitions/Statements/And">And</a></li><li><a href="../../Definitions/Statements/Implies" data-for="Definitions/Statements/Implies">Implies</a></li><li><a href="../../Definitions/Statements/Not" data-for="Definitions/Statements/Not">Not</a></li><li><a href="../../Definitions/Statements/Or" data-for="Definitions/Statements/Or">Or</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Terminology"><button class="folder-button"><span class="folder-title">Terminology</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Terminology"><li><a href="../../Definitions/Terminology/Algebraically-Complete" data-for="Definitions/Terminology/Algebraically-Complete">Algebraically Complete</a></li><li><a href="../../Definitions/Terminology/Bijective" data-for="Definitions/Terminology/Bijective">Bijective</a></li><li><a href="../../Definitions/Terminology/Bounded" data-for="Definitions/Terminology/Bounded">Bounded</a></li><li><a href="../../Definitions/Terminology/Countable" data-for="Definitions/Terminology/Countable">Countable</a></li><li><a href="../../Definitions/Terminology/Injective" data-for="Definitions/Terminology/Injective">Injective</a></li><li><a href="../../Definitions/Terminology/QED" data-for="Definitions/Terminology/QED">QED</a></li><li><a href="../../Definitions/Terminology/Surjective" data-for="Definitions/Terminology/Surjective">Surjective</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces"><button class="folder-button"><span class="folder-title">Topological Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Induced"><button class="folder-button"><span class="folder-title">Induced</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Induced"><li><a href="../../Definitions/Topological-Spaces/Induced/Initial-Topology" data-for="Definitions/Topological-Spaces/Induced/Initial-Topology">Initial Topology</a></li><li><a href="../../Definitions/Topological-Spaces/Induced/Product-Topology" data-for="Definitions/Topological-Spaces/Induced/Product-Topology">Product Topology</a></li><li><a href="../../Definitions/Topological-Spaces/Induced/Separating-Points" data-for="Definitions/Topological-Spaces/Induced/Separating-Points">Separating Points</a></li><li><a href="../../Definitions/Topological-Spaces/Induced/Weakest-Topology" data-for="Definitions/Topological-Spaces/Induced/Weakest-Topology">Weakest Topology</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Terminologies"><button class="folder-button"><span class="folder-title">Terminologies</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Terminologies"><li><a href="../../Definitions/Topological-Spaces/Terminologies/Compact" data-for="Definitions/Topological-Spaces/Terminologies/Compact">Compact</a></li><li><a href="../../Definitions/Topological-Spaces/Terminologies/Connected" data-for="Definitions/Topological-Spaces/Terminologies/Connected">Connected</a></li><li><a href="../../Definitions/Topological-Spaces/Terminologies/Connected-Component" data-for="Definitions/Topological-Spaces/Terminologies/Connected-Component">Connected Component</a></li></ul></div></li><li><a href="../../Definitions/Topological-Spaces/Continuous" data-for="Definitions/Topological-Spaces/Continuous">Continuous</a></li><li><a href="../../Definitions/Topological-Spaces/Hausdorff" data-for="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a></li><li><a href="../../Definitions/Topological-Spaces/Topological-Space" data-for="Definitions/Topological-Spaces/Topological-Space">Topological Space</a></li><li><a href="../../Definitions/Topological-Spaces/Topology" data-for="Definitions/Topological-Spaces/Topology">Topology</a></li><li><a href="../../Definitions/Topological-Spaces/Tychonoff-Theorem" data-for="Definitions/Topological-Spaces/Tychonoff-Theorem">Tychonoff Theorem</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Vector-Spaces"><button class="folder-button"><span class="folder-title">Vector Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Vector-Spaces"><li><a href="../../Definitions/Vector-Spaces/Complex-Vector-Space" data-for="Definitions/Vector-Spaces/Complex-Vector-Space">Complex Vector Space</a></li><li><a href="../../Definitions/Vector-Spaces/Linear-Basis" data-for="Definitions/Vector-Spaces/Linear-Basis">Linear Basis</a></li><li><a href="../../Definitions/Vector-Spaces/Normed-Vector-Space" data-for="Definitions/Vector-Spaces/Normed-Vector-Space">Normed Vector Space</a></li><li><a href="../../Definitions/Vector-Spaces/Properties-of-a-Vector-Space" data-for="Definitions/Vector-Spaces/Properties-of-a-Vector-Space">Properties of a Vector Space</a></li></ul></div></li><li><a href="../../Definitions/Cauchy-Sequence" data-for="Definitions/Cauchy-Sequence">Cauchy Sequence</a></li><li><a href="../../Definitions/Cauchy-Schwarz-Inequality" data-for="Definitions/Cauchy-Schwarz-Inequality">Cauchy-Schwarz Inequality</a></li><li><a href="../../Definitions/Hilbert-Spaces" data-for="Definitions/Hilbert-Spaces">Hilbert Spaces</a></li><li><a href="../../Definitions/Inner-Product" data-for="Definitions/Inner-Product">Inner Product</a></li><li><a href="../../Definitions/Least-Upper-Bound-Property" data-for="Definitions/Least-Upper-Bound-Property">Least Upper Bound Property</a></li><li><a href="../../Definitions/Linear-Map" data-for="Definitions/Linear-Map">Linear Map</a></li><li><a href="../../Definitions/Nets" data-for="Definitions/Nets">Nets</a></li><li><a href="../../Definitions/Norm" data-for="Definitions/Norm">Norm</a></li><li><a href="../../Definitions/Number-Field" data-for="Definitions/Number-Field">Number Field</a></li><li><a href="../../Definitions/Period-of-a-Fraction" data-for="Definitions/Period-of-a-Fraction">Period of a Fraction</a></li><li><a href="../../Definitions/Rational-Cauchy-Sequences" data-for="Definitions/Rational-Cauchy-Sequences">Rational Cauchy Sequences</a></li><li><a href="../../Definitions/Subcover" data-for="Definitions/Subcover">Subcover</a></li><li><a href="../../Definitions/Subnet" data-for="Definitions/Subnet">Subnet</a></li></ul></div></li><li><div class="folder-outer "><ul style="padding-left:0;" class="content" data-folderul></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Lectures"><button class="folder-button"><span class="folder-title">Lectures</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Lectures"><li><a href="../../Lectures/Lecture-1---1.1-Sets-and-Numbers" data-for="Lectures/Lecture-1---1.1-Sets-and-Numbers">Lecture 1 - 1.1 Sets and Numbers</a></li><li><a href="../../Lectures/Lecture-2" data-for="Lectures/Lecture-2">Lecture 2</a></li><li><a href="../../Lectures/Lecture-3" data-for="Lectures/Lecture-3">Lecture 3</a></li><li><a href="../../Lectures/Lecture-4---1.2-Metric-Spaces" data-for="Lectures/Lecture-4---1.2-Metric-Spaces">Lecture 4 - 1.2 Metric Spaces</a></li><li><a href="../../Lectures/Lecture-5" data-for="Lectures/Lecture-5">Lecture 5</a></li><li><a href="../../Lectures/Lecture-6---2.1-Topology" data-for="Lectures/Lecture-6---2.1-Topology">Lecture 6 - 2.1 Topology</a></li><li><a href="../../Lectures/Lecture-7" data-for="Lectures/Lecture-7">Lecture 7</a></li><li><a href="../../Lectures/Lecture-8" data-for="Lectures/Lecture-8">Lecture 8</a></li><li><a href="../../Lectures/Lecture-11" data-for="Lectures/Lecture-11">Lecture 11</a></li><li><a href="../../Lectures/Lecture-12---Induced-Topologies" data-for="Lectures/Lecture-12---Induced-Topologies">Lecture 12 - Induced Topologies</a></li><li><a href="../../Lectures/Lecture-13---Measure-Theory" data-for="Lectures/Lecture-13---Measure-Theory">Lecture 13 - Measure Theory</a></li></ul></div></li></ul></div></li><li id="explorer-end"></li></ul></div></div></div><div class="center"><div class="page-header"><div class="popover-hint"><nav class="breadcrumb-container" aria-label="breadcrumbs"><div class="breadcrumb-element"><a href="../../">Home</a><p> ❯ </p></div><div class="breadcrumb-element"><a href="../../Definitions/">Definitions</a><p> ❯ </p></div><div class="breadcrumb-element"><a href="../../Definitions/Functions/">Functions</a><p> ❯ </p></div><div class="breadcrumb-element"><a href>Inverse Function</a></div></nav><h1 class="article-title">Inverse Function</h1><p show-comma="true" class="content-meta"><time datetime="2025-03-01T15:39:56.357Z">01 Mar 2025</time><span>1 min read</span></p></div></div><article class="popover-hint"><p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span><br/>
|
||
such that<br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span><br/>
|
||
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord">∃</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">bijective</span></span></span></span></span></p></article><hr/><div class="page-footer"></div></div><div class="right sidebar"><div class="graph"><h3>Graph View</h3><div class="graph-outer"><div id="graph-container" data-cfg="{"drag":true,"zoom":true,"depth":1,"scale":1.1,"repelForce":0.5,"centerForce":0.3,"linkDistance":30,"fontSize":0.6,"opacityScale":1,"showTags":true,"removeTags":[],"focusOnHover":false,"enableRadial":false}"></div><button id="global-graph-icon" aria-label="Global Graph"><svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 55 55" fill="currentColor" xml:space="preserve"><path d="M49,0c-3.309,0-6,2.691-6,6c0,1.035,0.263,2.009,0.726,2.86l-9.829,9.829C32.542,17.634,30.846,17,29,17
|
||
s-3.542,0.634-4.898,1.688l-7.669-7.669C16.785,10.424,17,9.74,17,9c0-2.206-1.794-4-4-4S9,6.794,9,9s1.794,4,4,4
|
||
c0.74,0,1.424-0.215,2.019-0.567l7.669,7.669C21.634,21.458,21,23.154,21,25s0.634,3.542,1.688,4.897L10.024,42.562
|
||
C8.958,41.595,7.549,41,6,41c-3.309,0-6,2.691-6,6s2.691,6,6,6s6-2.691,6-6c0-1.035-0.263-2.009-0.726-2.86l12.829-12.829
|
||
c1.106,0.86,2.44,1.436,3.898,1.619v10.16c-2.833,0.478-5,2.942-5,5.91c0,3.309,2.691,6,6,6s6-2.691,6-6c0-2.967-2.167-5.431-5-5.91
|
||
v-10.16c1.458-0.183,2.792-0.759,3.898-1.619l7.669,7.669C41.215,39.576,41,40.26,41,41c0,2.206,1.794,4,4,4s4-1.794,4-4
|
||
s-1.794-4-4-4c-0.74,0-1.424,0.215-2.019,0.567l-7.669-7.669C36.366,28.542,37,26.846,37,25s-0.634-3.542-1.688-4.897l9.665-9.665
|
||
C46.042,11.405,47.451,12,49,12c3.309,0,6-2.691,6-6S52.309,0,49,0z M11,9c0-1.103,0.897-2,2-2s2,0.897,2,2s-0.897,2-2,2
|
||
S11,10.103,11,9z M6,51c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S8.206,51,6,51z M33,49c0,2.206-1.794,4-4,4s-4-1.794-4-4
|
||
s1.794-4,4-4S33,46.794,33,49z M29,31c-3.309,0-6-2.691-6-6s2.691-6,6-6s6,2.691,6,6S32.309,31,29,31z M47,41c0,1.103-0.897,2-2,2
|
||
s-2-0.897-2-2s0.897-2,2-2S47,39.897,47,41z M49,10c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S51.206,10,49,10z"></path></svg></button></div><div id="global-graph-outer"><div id="global-graph-container" data-cfg="{"drag":true,"zoom":true,"depth":-1,"scale":0.9,"repelForce":0.5,"centerForce":0.3,"linkDistance":30,"fontSize":0.6,"opacityScale":1,"showTags":true,"removeTags":[],"focusOnHover":true,"enableRadial":true}"></div></div></div><div class="backlinks"><h3>Backlinks</h3><ul class="overflow"><li><a href="../../Lectures/Lecture-4---1.2-Metric-Spaces" class="internal">Lecture 4 - 1.2 Metric Spaces</a></li></ul></div></div><footer class><p>Created with <a href="https://quartz.jzhao.xyz/">Quartz v4.4.0</a> © 2025</p><ul><li><a href="https://git.anthonyberg.io/smyalygames/ACIT4330-Page">Gitea</a></li></ul></footer></div></div></body><script type="application/javascript">function c(){let t=this.parentElement;t.classList.toggle("is-collapsed");let l=t.classList.contains("is-collapsed")?this.scrollHeight:t.scrollHeight;t.style.maxHeight=l+"px";let o=t,e=t.parentElement;for(;e;){if(!e.classList.contains("callout"))return;let n=e.classList.contains("is-collapsed")?e.scrollHeight:e.scrollHeight+o.scrollHeight;e.style.maxHeight=n+"px",o=e,e=e.parentElement}}function i(){let t=document.getElementsByClassName("callout is-collapsible");for(let s of t){let l=s.firstElementChild;if(l){l.addEventListener("click",c),window.addCleanup(()=>l.removeEventListener("click",c));let e=s.classList.contains("is-collapsed")?l.scrollHeight:s.scrollHeight;s.style.maxHeight=e+"px"}}}document.addEventListener("nav",i);window.addEventListener("resize",i);
|
||
</script><script src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/copy-tex.min.js" type="application/javascript"></script><script type="application/javascript">
|
||
const socket = new WebSocket('ws://localhost:3001')
|
||
// reload(true) ensures resources like images and scripts are fetched again in firefox
|
||
socket.addEventListener('message', () => document.location.reload(true))
|
||
</script><script src="../../postscript.js" type="module"></script></html> |