ACIT4330-Page/public/Lectures/Lecture-11.html
Anthony Berg 07737d3368
Some checks are pending
Build and Test / build-and-test (macos-latest) (push) Waiting to run
Build and Test / build-and-test (ubuntu-latest) (push) Waiting to run
Build and Test / build-and-test (windows-latest) (push) Waiting to run
Build and Test / publish-tag (push) Waiting to run
Docker build & push image / build (push) Waiting to run
Quartz sync: Mar 1, 2025, 2:40 PM
2025-03-01 14:40:30 +01:00

282 lines
216 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><head><title>Lecture 11</title><meta charset="utf-8"/><link rel="preconnect" href="https://fonts.googleapis.com"/><link rel="preconnect" href="https://fonts.gstatic.com"/><link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=IBM Plex Mono&amp;family=Schibsted Grotesk:wght@400;700&amp;family=Source Sans Pro:ital,wght@0,400;0,600;1,400;1,600&amp;display=swap"/><link rel="preconnect" href="https://cdnjs.cloudflare.com" crossorigin="anonymous"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><meta name="og:site_name" content="ACIT4330 Lecture Notes"/><meta property="og:title" content="Lecture 11"/><meta property="og:type" content="website"/><meta name="twitter:card" content="summary_large_image"/><meta name="twitter:title" content="Lecture 11"/><meta name="twitter:description" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta property="og:description" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta property="og:image:type" content="image/webp"/><meta property="og:image:alt" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta property="og:image:width" content="1200"/><meta property="og:image:height" content="630"/><meta property="og:image:url" content="https://quartz.jzhao.xyz/static/og-image.png"/><meta name="twitter:image" content="https://quartz.jzhao.xyz/static/og-image.png"/><meta property="og:image" content="https://quartz.jzhao.xyz/static/og-image.png"/><meta property="twitter:domain" content="quartz.jzhao.xyz"/><meta property="og:url" content="https://quartz.jzhao.xyz/Lectures/Lecture-11"/><meta property="twitter:url" content="https://quartz.jzhao.xyz/Lectures/Lecture-11"/><link rel="icon" href="../static/icon.png"/><meta name="description" content="Last lecture talked about Nets Proposition A topological space is Hausdorff \iff each net converges to at most one point. Proof \Rightarrow: “Easy” \Leftarrow: say x \neq y, therefore cannot be separated by disjoint neighbourhoods."/><meta name="generator" content="Quartz"/><link href="../index.css" rel="stylesheet" type="text/css" spa-preserve/><link href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" rel="stylesheet" type="text/css" spa-preserve/><script src="../prescript.js" type="application/javascript" spa-preserve></script><script type="application/javascript" spa-preserve>const fetchData = fetch("../static/contentIndex.json").then(data => data.json())</script></head><body data-slug="Lectures/Lecture-11"><div id="quartz-root" class="page"><div id="quartz-body"><div class="left sidebar"><h2 class="page-title"><a href="..">ACIT4330 Lecture Notes</a></h2><div class="spacer mobile-only"></div><div class="search"><button class="search-button" id="search-button"><p>Search</p><svg role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 19.9 19.7"><title>Search</title><g class="search-path" fill="none"><path stroke-linecap="square" d="M18.5 18.3l-5.4-5.4"></path><circle cx="8" cy="8" r="7"></circle></g></svg></button><div id="search-container"><div id="search-space"><input autocomplete="off" id="search-bar" name="search" type="text" aria-label="Search for something" placeholder="Search for something"/><div id="search-layout" data-preview="true"></div></div></div></div><button class="darkmode" id="darkmode"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="dayIcon" x="0px" y="0px" viewBox="0 0 35 35" style="enable-background:new 0 0 35 35" xml:space="preserve" aria-label="Dark mode"><title>Dark mode</title><path d="M6,17.5C6,16.672,5.328,16,4.5,16h-3C0.672,16,0,16.672,0,17.5 S0.672,19,1.5,19h3C5.328,19,6,18.328,6,17.5z M7.5,26c-0.414,0-0.789,0.168-1.061,0.439l-2,2C4.168,28.711,4,29.086,4,29.5 C4,30.328,4.671,31,5.5,31c0.414,0,0.789-0.168,1.06-0.44l2-2C8.832,28.289,9,27.914,9,27.5C9,26.672,8.329,26,7.5,26z M17.5,6 C18.329,6,19,5.328,19,4.5v-3C19,0.672,18.329,0,17.5,0S16,0.672,16,1.5v3C16,5.328,16.671,6,17.5,6z M27.5,9 c0.414,0,0.789-0.168,1.06-0.439l2-2C30.832,6.289,31,5.914,31,5.5C31,4.672,30.329,4,29.5,4c-0.414,0-0.789,0.168-1.061,0.44 l-2,2C26.168,6.711,26,7.086,26,7.5C26,8.328,26.671,9,27.5,9z M6.439,8.561C6.711,8.832,7.086,9,7.5,9C8.328,9,9,8.328,9,7.5 c0-0.414-0.168-0.789-0.439-1.061l-2-2C6.289,4.168,5.914,4,5.5,4C4.672,4,4,4.672,4,5.5c0,0.414,0.168,0.789,0.439,1.06 L6.439,8.561z M33.5,16h-3c-0.828,0-1.5,0.672-1.5,1.5s0.672,1.5,1.5,1.5h3c0.828,0,1.5-0.672,1.5-1.5S34.328,16,33.5,16z M28.561,26.439C28.289,26.168,27.914,26,27.5,26c-0.828,0-1.5,0.672-1.5,1.5c0,0.414,0.168,0.789,0.439,1.06l2,2 C28.711,30.832,29.086,31,29.5,31c0.828,0,1.5-0.672,1.5-1.5c0-0.414-0.168-0.789-0.439-1.061L28.561,26.439z M17.5,29 c-0.829,0-1.5,0.672-1.5,1.5v3c0,0.828,0.671,1.5,1.5,1.5s1.5-0.672,1.5-1.5v-3C19,29.672,18.329,29,17.5,29z M17.5,7 C11.71,7,7,11.71,7,17.5S11.71,28,17.5,28S28,23.29,28,17.5S23.29,7,17.5,7z M17.5,25c-4.136,0-7.5-3.364-7.5-7.5 c0-4.136,3.364-7.5,7.5-7.5c4.136,0,7.5,3.364,7.5,7.5C25,21.636,21.636,25,17.5,25z"></path></svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="nightIcon" x="0px" y="0px" viewBox="0 0 100 100" style="enable-background:new 0 0 100 100" xml:space="preserve" aria-label="Light mode"><title>Light mode</title><path d="M96.76,66.458c-0.853-0.852-2.15-1.064-3.23-0.534c-6.063,2.991-12.858,4.571-19.655,4.571 C62.022,70.495,50.88,65.88,42.5,57.5C29.043,44.043,25.658,23.536,34.076,6.47c0.532-1.08,0.318-2.379-0.534-3.23 c-0.851-0.852-2.15-1.064-3.23-0.534c-4.918,2.427-9.375,5.619-13.246,9.491c-9.447,9.447-14.65,22.008-14.65,35.369 c0,13.36,5.203,25.921,14.65,35.368s22.008,14.65,35.368,14.65c13.361,0,25.921-5.203,35.369-14.65 c3.872-3.871,7.064-8.328,9.491-13.246C97.826,68.608,97.611,67.309,96.76,66.458z"></path></svg></button><div class="explorer"><button type="button" id="mobile-explorer" class="collapsed hide-until-loaded" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{&quot;path&quot;:&quot;Definitions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Functions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory/Sigma-Algebra&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Metric-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Sets&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Statements&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Terminology&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Induced&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Terminologies&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Vector-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw/Lecture-11&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw/Lecture-12&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw/Lecture-13&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Lectures&quot;,&quot;collapsed&quot;:true}]" data-mobile="true" aria-controls="explorer-content" aria-expanded="false"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-menu"><line x1="4" x2="20" y1="12" y2="12"></line><line x1="4" x2="20" y1="6" y2="6"></line><line x1="4" x2="20" y1="18" y2="18"></line></svg></button><button type="button" id="desktop-explorer" class="title-button" data-behavior="collapse" data-collapsed="collapsed" data-savestate="true" data-tree="[{&quot;path&quot;:&quot;Definitions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Functions&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Measure-Theory/Sigma-Algebra&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Metric-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Sets&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Statements&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Terminology&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Induced&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Topological-Spaces/Terminologies&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Definitions/Vector-Spaces&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw/Lecture-11&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw/Lecture-12&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Excalidraw/Lecture-13&quot;,&quot;collapsed&quot;:true},{&quot;path&quot;:&quot;Lectures&quot;,&quot;collapsed&quot;:true}]" data-mobile="false" aria-controls="explorer-content" aria-expanded="true"><h2>Explorer</h2><svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="fold"><polyline points="6 9 12 15 18 9"></polyline></svg></button><div id="explorer-content"><ul class="overflow" id="explorer-ul"><li><div class="folder-outer open"><ul style="padding-left:0;" class="content" data-folderul><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions"><button class="folder-button"><span class="folder-title">Definitions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Functions"><button class="folder-button"><span class="folder-title">Functions</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Functions"><li><a href="../Definitions/Functions/Characteristic-Function" data-for="Definitions/Functions/Characteristic-Function">Characteristic Function</a></li><li><a href="../Definitions/Functions/Direct-Product" data-for="Definitions/Functions/Direct-Product">Direct Product</a></li><li><a href="../Definitions/Functions/Inverse-Function" data-for="Definitions/Functions/Inverse-Function">Inverse Function</a></li><li><a href="../Definitions/Functions/Metric" data-for="Definitions/Functions/Metric">Metric</a></li><li><a href="../Definitions/Functions/Power-Set" data-for="Definitions/Functions/Power-Set">Power Set</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory"><button class="folder-button"><span class="folder-title">Measure Theory</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Measure-Theory/Sigma-Algebra"><button class="folder-button"><span class="folder-title">Sigma-Algebra</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Measure-Theory/Sigma-Algebra"><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Measurable">Borel Measurable</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets" data-for="Definitions/Measure-Theory/Sigma-Algebra/Borel-Sets">Borel Sets</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Measurable" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measurable">Measurable</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Measure" data-for="Definitions/Measure-Theory/Sigma-Algebra/Measure">Measure</a></li><li><a href="../Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra" data-for="Definitions/Measure-Theory/Sigma-Algebra/Sigma-Algebra">Sigma-Algebra</a></li></ul></div></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Metric-Spaces"><button class="folder-button"><span class="folder-title">Metric Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Metric-Spaces"><li><a href="../Definitions/Metric-Spaces/Ball" data-for="Definitions/Metric-Spaces/Ball">Ball</a></li><li><a href="../Definitions/Metric-Spaces/Interior-Point" data-for="Definitions/Metric-Spaces/Interior-Point">Interior Point</a></li><li><a href="../Definitions/Metric-Spaces/Metric-Space" data-for="Definitions/Metric-Spaces/Metric-Space">Metric Space</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Sets"><button class="folder-button"><span class="folder-title">Sets</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Sets"><li><a href="../Definitions/Sets/Complex-Numbers" data-for="Definitions/Sets/Complex-Numbers">Complex Numbers</a></li><li><a href="../Definitions/Sets/Open-Cover" data-for="Definitions/Sets/Open-Cover">Open Cover</a></li><li><a href="../Definitions/Sets/Open-Map" data-for="Definitions/Sets/Open-Map">Open Map</a></li><li><a href="../Definitions/Sets/Open-Sets" data-for="Definitions/Sets/Open-Sets">Open Sets</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Statements"><button class="folder-button"><span class="folder-title">Statements</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Statements"><li><a href="../Definitions/Statements/And" data-for="Definitions/Statements/And">And</a></li><li><a href="../Definitions/Statements/Implies" data-for="Definitions/Statements/Implies">Implies</a></li><li><a href="../Definitions/Statements/Not" data-for="Definitions/Statements/Not">Not</a></li><li><a href="../Definitions/Statements/Or" data-for="Definitions/Statements/Or">Or</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Terminology"><button class="folder-button"><span class="folder-title">Terminology</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Terminology"><li><a href="../Definitions/Terminology/Algebraically-Complete" data-for="Definitions/Terminology/Algebraically-Complete">Algebraically Complete</a></li><li><a href="../Definitions/Terminology/Bijective" data-for="Definitions/Terminology/Bijective">Bijective</a></li><li><a href="../Definitions/Terminology/Bounded" data-for="Definitions/Terminology/Bounded">Bounded</a></li><li><a href="../Definitions/Terminology/Countable" data-for="Definitions/Terminology/Countable">Countable</a></li><li><a href="../Definitions/Terminology/Injective" data-for="Definitions/Terminology/Injective">Injective</a></li><li><a href="../Definitions/Terminology/QED" data-for="Definitions/Terminology/QED">QED</a></li><li><a href="../Definitions/Terminology/Surjective" data-for="Definitions/Terminology/Surjective">Surjective</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces"><button class="folder-button"><span class="folder-title">Topological Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Induced"><button class="folder-button"><span class="folder-title">Induced</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Induced"><li><a href="../Definitions/Topological-Spaces/Induced/Initial-Topology" data-for="Definitions/Topological-Spaces/Induced/Initial-Topology">Initial Topology</a></li><li><a href="../Definitions/Topological-Spaces/Induced/Product-Topology" data-for="Definitions/Topological-Spaces/Induced/Product-Topology">Product Topology</a></li><li><a href="../Definitions/Topological-Spaces/Induced/Separating-Points" data-for="Definitions/Topological-Spaces/Induced/Separating-Points">Separating Points</a></li><li><a href="../Definitions/Topological-Spaces/Induced/Weakest-Topology" data-for="Definitions/Topological-Spaces/Induced/Weakest-Topology">Weakest Topology</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Topological-Spaces/Terminologies"><button class="folder-button"><span class="folder-title">Terminologies</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Topological-Spaces/Terminologies"><li><a href="../Definitions/Topological-Spaces/Terminologies/Compact" data-for="Definitions/Topological-Spaces/Terminologies/Compact">Compact</a></li><li><a href="../Definitions/Topological-Spaces/Terminologies/Connected" data-for="Definitions/Topological-Spaces/Terminologies/Connected">Connected</a></li><li><a href="../Definitions/Topological-Spaces/Terminologies/Connected-Component" data-for="Definitions/Topological-Spaces/Terminologies/Connected-Component">Connected Component</a></li></ul></div></li><li><a href="../Definitions/Topological-Spaces/Continuous" data-for="Definitions/Topological-Spaces/Continuous">Continuous</a></li><li><a href="../Definitions/Topological-Spaces/Hausdorff" data-for="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a></li><li><a href="../Definitions/Topological-Spaces/Topological-Space" data-for="Definitions/Topological-Spaces/Topological-Space">Topological Space</a></li><li><a href="../Definitions/Topological-Spaces/Topology" data-for="Definitions/Topological-Spaces/Topology">Topology</a></li><li><a href="../Definitions/Topological-Spaces/Tychonoff-Theorem" data-for="Definitions/Topological-Spaces/Tychonoff-Theorem">Tychonoff Theorem</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Definitions/Vector-Spaces"><button class="folder-button"><span class="folder-title">Vector Spaces</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Definitions/Vector-Spaces"><li><a href="../Definitions/Vector-Spaces/Complex-Vector-Space" data-for="Definitions/Vector-Spaces/Complex-Vector-Space">Complex Vector Space</a></li><li><a href="../Definitions/Vector-Spaces/Linear-Basis" data-for="Definitions/Vector-Spaces/Linear-Basis">Linear Basis</a></li><li><a href="../Definitions/Vector-Spaces/Normed-Vector-Space" data-for="Definitions/Vector-Spaces/Normed-Vector-Space">Normed Vector Space</a></li><li><a href="../Definitions/Vector-Spaces/Properties-of-a-Vector-Space" data-for="Definitions/Vector-Spaces/Properties-of-a-Vector-Space">Properties of a Vector Space</a></li></ul></div></li><li><a href="../Definitions/Cauchy-Sequence" data-for="Definitions/Cauchy-Sequence">Cauchy Sequence</a></li><li><a href="../Definitions/Cauchy-Schwarz-Inequality" data-for="Definitions/Cauchy-Schwarz-Inequality">Cauchy-Schwarz Inequality</a></li><li><a href="../Definitions/Hilbert-Spaces" data-for="Definitions/Hilbert-Spaces">Hilbert Spaces</a></li><li><a href="../Definitions/Inner-Product" data-for="Definitions/Inner-Product">Inner Product</a></li><li><a href="../Definitions/Least-Upper-Bound-Property" data-for="Definitions/Least-Upper-Bound-Property">Least Upper Bound Property</a></li><li><a href="../Definitions/Linear-Map" data-for="Definitions/Linear-Map">Linear Map</a></li><li><a href="../Definitions/Nets" data-for="Definitions/Nets">Nets</a></li><li><a href="../Definitions/Norm" data-for="Definitions/Norm">Norm</a></li><li><a href="../Definitions/Number-Field" data-for="Definitions/Number-Field">Number Field</a></li><li><a href="../Definitions/Period-of-a-Fraction" data-for="Definitions/Period-of-a-Fraction">Period of a Fraction</a></li><li><a href="../Definitions/Rational-Cauchy-Sequences" data-for="Definitions/Rational-Cauchy-Sequences">Rational Cauchy Sequences</a></li><li><a href="../Definitions/Subcover" data-for="Definitions/Subcover">Subcover</a></li><li><a href="../Definitions/Subnet" data-for="Definitions/Subnet">Subnet</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Excalidraw"><button class="folder-button"><span class="folder-title">Excalidraw</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Excalidraw"><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Excalidraw/Lecture-11"><button class="folder-button"><span class="folder-title">Lecture 11</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Excalidraw/Lecture-11"><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-10.57.31.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-10.57.31.excalidraw">Drawing 2025-02-13 10.57.31.excalidraw</a></li><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-11.02.27.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-11.02.27.excalidraw">Drawing 2025-02-13 11.02.27.excalidraw</a></li><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-11.26.08.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-11.26.08.excalidraw">Drawing 2025-02-13 11.26.08.excalidraw</a></li><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-11.47.33.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-11.47.33.excalidraw">Drawing 2025-02-13 11.47.33.excalidraw</a></li><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-12.01.57.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-12.01.57.excalidraw">Drawing 2025-02-13 12.01.57.excalidraw</a></li><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-12.07.00.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-12.07.00.excalidraw">Drawing 2025-02-13 12.07.00.excalidraw</a></li><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-14.01.44.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-14.01.44.excalidraw">Drawing 2025-02-13 14.01.44.excalidraw</a></li><li><a href="../Excalidraw/Lecture-11/Drawing-2025-02-13-14.06.25.excalidraw" data-for="Excalidraw/Lecture-11/Drawing-2025-02-13-14.06.25.excalidraw">Drawing 2025-02-13 14.06.25.excalidraw</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Excalidraw/Lecture-12"><button class="folder-button"><span class="folder-title">Lecture 12</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Excalidraw/Lecture-12"><li><a href="../Excalidraw/Lecture-12/Drawing-2025-02-24-11.58.37.excalidraw" data-for="Excalidraw/Lecture-12/Drawing-2025-02-24-11.58.37.excalidraw">Drawing 2025-02-24 11.58.37.excalidraw</a></li><li><a href="../Excalidraw/Lecture-12/Drawing-2025-02-24-12.47.32.excalidraw" data-for="Excalidraw/Lecture-12/Drawing-2025-02-24-12.47.32.excalidraw">Drawing 2025-02-24 12.47.32.excalidraw</a></li></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Excalidraw/Lecture-13"><button class="folder-button"><span class="folder-title">Lecture 13</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Excalidraw/Lecture-13"><li><a href="../Excalidraw/Lecture-13/Drawing-2025-02-27-13.19.24.excalidraw" data-for="Excalidraw/Lecture-13/Drawing-2025-02-27-13.19.24.excalidraw">Drawing 2025-02-27 13.19.24.excalidraw</a></li></ul></div></li></ul></div></li><li><div class="folder-outer "><ul style="padding-left:0;" class="content" data-folderul></ul></div></li><li><div class="folder-container"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" viewBox="5 8 14 8" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="folder-icon"><polyline points="6 9 12 15 18 9"></polyline></svg><div data-folderpath="Lectures"><button class="folder-button"><span class="folder-title">Lectures</span></button></div></div><div class="folder-outer "><ul style="padding-left:1.4rem;" class="content" data-folderul="Lectures"><li><a href="../Lectures/Lecture-1---1.1-Sets-and-Numbers" data-for="Lectures/Lecture-1---1.1-Sets-and-Numbers">Lecture 1 - 1.1 Sets and Numbers</a></li><li><a href="../Lectures/Lecture-2" data-for="Lectures/Lecture-2">Lecture 2</a></li><li><a href="../Lectures/Lecture-3" data-for="Lectures/Lecture-3">Lecture 3</a></li><li><a href="../Lectures/Lecture-4---1.2-Metric-Spaces" data-for="Lectures/Lecture-4---1.2-Metric-Spaces">Lecture 4 - 1.2 Metric Spaces</a></li><li><a href="../Lectures/Lecture-5" data-for="Lectures/Lecture-5">Lecture 5</a></li><li><a href="../Lectures/Lecture-6---2.1-Topology" data-for="Lectures/Lecture-6---2.1-Topology">Lecture 6 - 2.1 Topology</a></li><li><a href="../Lectures/Lecture-7" data-for="Lectures/Lecture-7">Lecture 7</a></li><li><a href="../Lectures/Lecture-8" data-for="Lectures/Lecture-8">Lecture 8</a></li><li><a href="../Lectures/Lecture-11" data-for="Lectures/Lecture-11">Lecture 11</a></li><li><a href="../Lectures/Lecture-12---Induced-Topologies" data-for="Lectures/Lecture-12---Induced-Topologies">Lecture 12 - Induced Topologies</a></li><li><a href="../Lectures/Lecture-13---Measure-Theory" data-for="Lectures/Lecture-13---Measure-Theory">Lecture 13 - Measure Theory</a></li></ul></div></li></ul></div></li><li id="explorer-end"></li></ul></div></div></div><div class="center"><div class="page-header"><div class="popover-hint"><nav class="breadcrumb-container" aria-label="breadcrumbs"><div class="breadcrumb-element"><a href="../">Home</a><p> </p></div><div class="breadcrumb-element"><a href="../Lectures/">Lectures</a><p> </p></div><div class="breadcrumb-element"><a href>Lecture 11</a></div></nav><h1 class="article-title">Lecture 11</h1><p show-comma="true" class="content-meta"><time datetime="2025-02-13T00:00:00.000Z">13 Feb 2025</time><span>5 min read</span></p></div></div><article class="popover-hint"><p>Last lecture talked about <a href="../Definitions/Nets" class="internal" data-slug="Definitions/Nets">Nets</a></p>
<h1 id="proposition">Proposition<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proposition" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
<p>A <a href="../Definitions/Topological-Spaces/Topological-Space" class="internal alias" data-slug="Definitions/Topological-Spaces/Topological-Space">topological space</a> is <a href="../Definitions/Topological-Spaces/Hausdorff" class="internal" data-slug="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.549em;vertical-align:-0.024em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span></span></span> each <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> converges to at most one point.</p>
<h2 id="proof">Proof<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proof" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<h3 id="rightarrow"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel"></span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#rightarrow" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<p>“Easy”<br/>
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-10.57.31.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
<h3 id="leftarrow"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel"></span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#leftarrow" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<p>say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>, therefore cannot be separated by disjoint neighbourhoods.</p>
<p>By the axiom of choice, pick <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8943em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>, where <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> are neighbourhoods of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> respectively. Consider the index set of pairs <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> if <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span></span></span></span>.</p>
<p>This is a “ufos”, and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1052em;vertical-align:-0.3552em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7858em;vertical-align:-0.3552em;"></span><span class="mord mathnormal">x</span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> which is a contradiction.</p>
<p><img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-11.02.27.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.248em;vertical-align:-1.7089em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span style="top:-1.3185em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mrel mtight"></span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="mbin mtight"></span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4306em;"><span class="svg-align" style="top:-1.9968em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">A</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0032em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.7089em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.4056em;vertical-align:-1.6037em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mord"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-1.4237em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mrel mtight"></span><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mord mathnormal mtight">A</span><span class="mrel mtight"></span><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6828em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mbin mtight"></span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mrel mtight"></span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6828em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.6037em;"><span></span></span></span></span></span></span></span></span></p>
<h1 id="proposition---convergence-in-topological-space">Proposition - Convergence in Topological Space<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proposition---convergence-in-topological-space" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span> <a href="../Definitions/Topological-Spaces/Topological-Space" class="internal alias" data-slug="Definitions/Topological-Spaces/Topological-Space">topological spaces</a> with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span>.</p>
<p>Then:<br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span> is continuous at <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.549em;vertical-align:-0.024em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span>.<br/>
(<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"></span></span></span></span> neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"></span></span></span></span> neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.436em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.186em;"><span style="top:-3.1871em;"><span class="pstrut" style="height:3.1871em;"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1871em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel"></span></span></span><span class="svg-align" style="top:-3.6391em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0391em;"><span></span></span></span></span></span></span><span style="top:-4.7492em;"><span class="pstrut" style="height:3.1871em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="mrel mtight"></span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0391em;"><span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> )</p>
<h2 id="proof-1">Proof<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proof-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<h3 id="rightarrow-1"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel"></span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#rightarrow-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<p>Suppose <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> and that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> is a neighbourhood of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>. Then there <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"></span></span></span></span> a neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span></span></span></span> (<a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a>) will eventually be in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)}</span></span></span></span> will eventually be in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>, so that means <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>.</p>
<h3 id="leftarrow-1"><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel"></span></span></span></span>:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#leftarrow-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<p>(Going for a proof by contradiction)</p>
<p>Say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> is a neighbourhood of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> such that every neighbourhood <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> intersects <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> belongs to the closure of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span>. By previous proposition there <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"></span></span></span></span> <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span>.</p>
<p><img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-11.26.08.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7184em;vertical-align:-0.024em;"></span><span class="mord text"><span class="mord">to </span></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">circle</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9073em;vertical-align:-0.024em;"></span><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8833em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span><span style="top:-3.8033em;"><span class="pstrut" style="height:3em;"></span><span class="overline-line" style="border-bottom-width:0.04em;"></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span></p>
<h2 id="definition">Definition<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#definition" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<p>A <strong><a href="../Definitions/Subnet" class="internal alias" data-slug="Definitions/Subnet">subnet</a></strong> of a <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> is a <a href="../Definitions/Nets" class="internal alias" data-slug="Definitions/Nets">net</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> and a map <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">h</span></span></span></span> and such that <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span></span></span> with <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord mathnormal">h</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9463em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.854em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span></span></span>.</p>
<h2 id="theorem">Theorem<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#theorem" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<p>A space is <a href="../Definitions/Topological-Spaces/Terminologies/Compact" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Compact">compact</a> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.549em;vertical-align:-0.024em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span></span></span> every net has a converging subnet.</p>
<h3 id="examples">Examples<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#examples" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<blockquote class="callout example" data-callout="example">
<div class="callout-title">
<div class="callout-icon"></div>
<div class="callout-title-inner"><p>Example: Illustrates <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel"></span></span></span></span></p></div>
</div>
<div class="callout-content">
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span><br/>
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-12.01.57.excalidraw.dark.svg" width="auto" height="auto" alt/><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span></p>
</div>
</blockquote>
<blockquote class="callout example" data-callout="example">
<div class="callout-title">
<div class="callout-icon"></div>
<div class="callout-title-inner"><p>Example: Illustrates <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel"></span></span></span></span></p></div>
</div>
<div class="callout-content">
<p>Consider the <a href="../Definitions/Topological-Spaces/Terminologies/Compact" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Compact">compact</a> space <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>, say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]}</span></span></span></span><br/>
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-12.07.00.excalidraw.dark.svg" width="auto" height="auto" alt/><br/>
<strong>Construct subsequence:</strong><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> any <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05724em;">j</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span> in the half with infinitely many <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>s.<br/>
Pick <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> to be in the half with infinitely many <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>s.</p>
<p>Get subsequence <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span></span></span></span> contained in more and more narrow intervals. So <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span></span></span></span> will be <a href="../Definitions/Cauchy-Sequence" class="internal alias" data-slug="Definitions/Cauchy-Sequence">cauchy</a> incomplete <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>, so it converges.</p>
<blockquote class="callout note" data-callout="note">
<div class="callout-title">
<div class="callout-icon"></div>
<div class="callout-title-inner"><p> <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4702em;vertical-align:-1.7202em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-1.4159em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">closed</span></span><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mrel mtight"></span><span class="mspace mtight" style="margin-right:0.3253em;"></span><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight" style="margin-right:0.01968em;">pl</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">e</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.7202em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1591em;vertical-align:-1.4702em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span style="top:-1.6659em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mrel mtight"></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord text mtight"><span class="mord mtight">complete</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span class="svg-align" style="top:-2.352em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.648em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4702em;"><span></span></span></span></span></span></span></span></span></p></div>
</div>
</blockquote>
</div>
</blockquote>
<h1 id="exercises">Exercises<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#exercises" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h1>
<blockquote class="callout note" data-callout="note">
<div class="callout-title">
<div class="callout-icon"></div>
<div class="callout-title-inner"><p>Note</p></div>
</div>
<div class="callout-content">
<p>Question numbering is probably not the same as the ones from the exercises on Canvas. The numbering was done in order they appeared in the lecture.</p>
</div>
</blockquote>
<h2 id="question-1">Question 1<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-1" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">contiuous</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord text"><span class="mord">continuous</span></span></span></span></span><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9344em;vertical-align:-0.011em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9234em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">g</span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1191em;vertical-align:-0.011em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1081em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span> and <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.158em;vertical-align:-0.011em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.147em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="mbin mtight"></span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">g</span><span class="mclose mtight">)</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">x</span><span class="mclose mtight">)</span><span class="mrel mtight">=</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">g</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">x</span><span class="mclose mtight">))</span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> <a href="../Definitions/Sets/Open-Sets" class="internal alias" data-slug="Definitions/Sets/Open-Sets">open</a> in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span><br/>
for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>.</p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span><br/>
for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span></p>
<p>Is <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> when <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>?</p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.4404em;vertical-align:-1.5763em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-1.4237em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5763em;"><span></span></span></span></span></span><span class="mclose">)</span></span></span></span></p>
<p>Take <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3581em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1081em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">claim</span></span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMinYMin slice"><path d="M400000 241H110l3-3c68.7-52.7 113.7-120
135-202 4-14.7 6-23 6-25 0-7.3-7-11-21-11-8 0-13.2.8-15.5 2.5-2.3 1.7-4.2 5.8
-5.5 12.5-1.3 4.7-2.7 10.3-4 17-12 48.7-34.8 92-68.5 130S65.3 228.3 18 247
c-10 4-16 7.7-18 11 0 8.7 6 14.3 18 17 47.3 18.7 87.8 47 121.5 85S196 441.3 208
490c.7 2 1.3 5 2 9s1.2 6.7 1.5 8c.3 1.3 1 3.3 2 6s2.2 4.5 3.5 5.5c1.3 1 3.3
1.8 6 2.5s6 1 10 1c14 0 21-3.7 21-11 0-2-2-10.3-6-25-20-79.3-65-146.7-135-202
l-3-3h399890zM100 241v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">true for any subset of </span></span><span class="mord mathnormal">A</span><span class="mord text"><span class="mord"> of </span></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> since <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span>, as <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span> is continuous.</p>
<p>But then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span> as <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span></span></span></span> is continuous. Hence <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span> is open in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span></span></span></span> is continuous.</p>
<h3 id="claim">Claim:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#claim" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>.</p>
<h3 id="proof-2">Proof:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#proof-2" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<p>Say <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span>, or <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span></span></span></span>.<br/>
If <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">))</span></span></span></span>, then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>.</p>
<h3 id="alternatively">Alternatively:<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#alternatively" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h3>
<p>Say we have <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> in <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span>. Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.951em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.701em;"><span style="top:-3.0149em;"><span class="pstrut" style="height:3.0149em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.0149em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel">=</span></span></span><span class="svg-align" style="top:-3.4669em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-4.2297em;"><span class="pstrut" style="height:3.0149em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">Definition of </span></span><span class="mord mtight"></span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">))</span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.6164em;"><span style="top:-3.0149em;"><span class="pstrut" style="height:3.0149em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.0149em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel">=</span></span></span><span class="svg-align" style="top:-3.4669em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-4.3298em;"><span class="pstrut" style="height:3.0149em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3281em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mrel mtight"></span><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span></span></span></span> (Note: Im assuming the <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mop">lim</span></span></span></span> is <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"></span></span></span></span>, as it was not defined in the lecture) <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.3669em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop"><span class="mop">lim</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight"></span><span class="mord mtight"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>.</p>
<h2 id="question-2">Question 2<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-2" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.22222em;">Y</span></span></span></span></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.3402em;vertical-align:-0.1944em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:2.1458em;"><span style="top:-3.3313em;"><span class="pstrut" style="height:3.3313em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.3313em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span><span class="svg-align" style="top:-3.7833em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-4.9988em;"><span class="pstrut" style="height:3.3313em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">Compact</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span></span><span class="base"><span class="strut" style="height:0.4637em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.1513em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:2.1513em;"><span style="top:-3.3369em;"><span class="pstrut" style="height:3.3369em;"></span><span class="mord mover"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:1.3369em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span><span class="svg-align" style="top:-3.7889em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117
-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7
5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334
c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7
311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11
12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span></span></span></span></span><span style="top:-5.0099em;"><span class="pstrut" style="height:3.3369em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">Not compact</span></span></span></span></span></span></span></span></span></span></span></span><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.522em;vertical-align:-0.011em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.5053em;vertical-align:-2.8164em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span style="top:-1.627em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4637em;"><span style="top:-1.7127em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mop mtight"><span class="mtight">t</span><span class="mtight">a</span><span class="mtight">n</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.4637em;"><span class="svg-align" style="top:-2.352em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy mtight" style="height:0.548em;min-width:1.6em;"><span class="brace-left mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mrel"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.648em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2873em;"><span></span></span></span></span></span><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-1.318em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mrel mtight"></span><span class="mopen mtight"></span><span class="mspace mtight" style="margin-right:0.2453em;"></span><span class="mord mtight"></span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8176em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">2</span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mpunct mtight">,</span><span class="mspace mtight" style="margin-right:0.2453em;"></span><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size1 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8176em;"><span style="top:-2.468em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mtight">2</span></span></span><span style="top:-3.2255em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.387em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.532em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size1 size6"></span></span><span class="mspace mtight" style="margin-right:0.2453em;"></span><span class="mclose mtight"></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span class="svg-align" style="top:-2.102em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy mtight" style="height:0.548em;min-width:1.6em;"><span class="brace-left mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right mtight" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.898em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.062em;"><span></span></span></span></span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6889em;"><span class="svg-align" style="top:-2.352em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z"></path></svg></span><span class="brace-center" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z"></path></svg></span><span class="brace-right" style="height:0.548em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z"></path></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbb">R</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.648em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.8164em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3976em;vertical-align:-0.345em;"></span><span class="mopen"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel x-arrow"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0526em;"><span style="top:-3.322em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight x-arrow-pad"><span class="mord mtight"><span class="mop mtight"><span class="mtight">t</span><span class="mtight">a</span><span class="mtight">n</span></span></span></span></span><span class="svg-align" style="top:-2.689em;"><span class="pstrut" style="height:2.7em;"></span><span class="hide-tail" style="height:0.522em;min-width:1.469em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="0.522em" viewBox="0 0 400000 522" preserveAspectRatio="xMaxYMin slice"><path d="M0 241v40h399891c-47.3 35.3-84 78-110 128
-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20
11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7
39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85
-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5
-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67
151.7 139 205zm0 0v40h399900v-40z"></path></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.011em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"></span><span class="mord"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose"></span></span></span></span><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span></span><span class="base"><span class="strut" style="height:0.4637em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> by compactness argument.<br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is more <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a> than <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>.</p>
<h2 id="question-3">Question 3<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-3" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<p>Why does there not exist a continuous injection for <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>?</p>
<p>What happens then if you take the image <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>?<br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span> is both compact and <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a>, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span> for some <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span>.</p>
<p>Then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span> is continuous and <a href="../Definitions/Terminology/Bijective" class="internal alias" data-slug="Definitions/Terminology/Bijective">bijective</a> (as nothing is excluded from the image).</p>
<p>Since both <a href="../Definitions/Topological-Spaces/Topological-Space" class="internal alias" data-slug="Definitions/Topological-Spaces/Topological-Space">spaces</a> (Note: not sure if it is the correct link) are <a href="../Definitions/Topological-Spaces/Terminologies/Compact" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Compact">compact</a> and <a href="../Definitions/Topological-Spaces/Hausdorff" class="internal" data-slug="Definitions/Topological-Spaces/Hausdorff">Hausdorff</a>, then <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"></span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span> is also continuous, so <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>. But removing one point leaves <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span> <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a>, but not <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mclose">]</span></span></span></span>. So this is a contradiction.</p>
<h2 id="question-4">Question 4<a role="anchor" aria-hidden="true" tabindex="-1" data-no-popover="true" href="#question-4" class="internal"><svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg></a></h2>
<p>Show that the <a href="../Definitions/Topological-Spaces/Terminologies/Connected" class="internal alias" data-slug="Definitions/Topological-Spaces/Terminologies/Connected">connected</a> components of <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6889em;"></span><span class="mord mathbb">R</span></span></span></span> consists of single points, and that one of these are <a href="../Definitions/Sets/Open-Sets" class="internal alias" data-slug="Definitions/Sets/Open-Sets">open</a>.</p>
<p><a href="../Definitions/Topological-Spaces/Topology" class="internal" data-slug="Definitions/Topological-Spaces/Topology">Topology</a> on <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mord text"><span class="mord"> open in </span></span><span class="mord mathbb">R</span><span class="mclose">}</span></span></span></span></p>
<p><img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-14.01.44.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span></p>
<p><span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">p</span><span class="mclose">}</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span></span></span></span><br/>
<span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen"></span><span class="mord"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">p</span><span class="mclose"></span></span></span></span> contains more points than <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span><br/>
<img src="../Excalidraw/Lecture-11/Drawing-2025-02-13-14.06.25.excalidraw.dark.svg" width="auto" height="auto" alt/></p>
<p>In the graph above: <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathbb">R</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin"></span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8556em;vertical-align:-0.1667em;"></span><span class="mord mathbb">Q</span></span></span></span>.</p></article><hr/><div class="page-footer"></div></div><div class="right sidebar"><div class="graph"><h3>Graph View</h3><div class="graph-outer"><div id="graph-container" data-cfg="{&quot;drag&quot;:true,&quot;zoom&quot;:true,&quot;depth&quot;:1,&quot;scale&quot;:1.1,&quot;repelForce&quot;:0.5,&quot;centerForce&quot;:0.3,&quot;linkDistance&quot;:30,&quot;fontSize&quot;:0.6,&quot;opacityScale&quot;:1,&quot;showTags&quot;:true,&quot;removeTags&quot;:[],&quot;focusOnHover&quot;:false,&quot;enableRadial&quot;:false}"></div><button id="global-graph-icon" aria-label="Global Graph"><svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 55 55" fill="currentColor" xml:space="preserve"><path d="M49,0c-3.309,0-6,2.691-6,6c0,1.035,0.263,2.009,0.726,2.86l-9.829,9.829C32.542,17.634,30.846,17,29,17
s-3.542,0.634-4.898,1.688l-7.669-7.669C16.785,10.424,17,9.74,17,9c0-2.206-1.794-4-4-4S9,6.794,9,9s1.794,4,4,4
c0.74,0,1.424-0.215,2.019-0.567l7.669,7.669C21.634,21.458,21,23.154,21,25s0.634,3.542,1.688,4.897L10.024,42.562
C8.958,41.595,7.549,41,6,41c-3.309,0-6,2.691-6,6s2.691,6,6,6s6-2.691,6-6c0-1.035-0.263-2.009-0.726-2.86l12.829-12.829
c1.106,0.86,2.44,1.436,3.898,1.619v10.16c-2.833,0.478-5,2.942-5,5.91c0,3.309,2.691,6,6,6s6-2.691,6-6c0-2.967-2.167-5.431-5-5.91
v-10.16c1.458-0.183,2.792-0.759,3.898-1.619l7.669,7.669C41.215,39.576,41,40.26,41,41c0,2.206,1.794,4,4,4s4-1.794,4-4
s-1.794-4-4-4c-0.74,0-1.424,0.215-2.019,0.567l-7.669-7.669C36.366,28.542,37,26.846,37,25s-0.634-3.542-1.688-4.897l9.665-9.665
C46.042,11.405,47.451,12,49,12c3.309,0,6-2.691,6-6S52.309,0,49,0z M11,9c0-1.103,0.897-2,2-2s2,0.897,2,2s-0.897,2-2,2
S11,10.103,11,9z M6,51c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S8.206,51,6,51z M33,49c0,2.206-1.794,4-4,4s-4-1.794-4-4
s1.794-4,4-4S33,46.794,33,49z M29,31c-3.309,0-6-2.691-6-6s2.691-6,6-6s6,2.691,6,6S32.309,31,29,31z M47,41c0,1.103-0.897,2-2,2
s-2-0.897-2-2s0.897-2,2-2S47,39.897,47,41z M49,10c-2.206,0-4-1.794-4-4s1.794-4,4-4s4,1.794,4,4S51.206,10,49,10z"></path></svg></button></div><div id="global-graph-outer"><div id="global-graph-container" data-cfg="{&quot;drag&quot;:true,&quot;zoom&quot;:true,&quot;depth&quot;:-1,&quot;scale&quot;:0.9,&quot;repelForce&quot;:0.5,&quot;centerForce&quot;:0.3,&quot;linkDistance&quot;:30,&quot;fontSize&quot;:0.6,&quot;opacityScale&quot;:1,&quot;showTags&quot;:true,&quot;removeTags&quot;:[],&quot;focusOnHover&quot;:true,&quot;enableRadial&quot;:true}"></div></div></div><div class="toc desktop-only"><button type="button" id="toc" class aria-controls="toc-content" aria-expanded="true"><h3>Table of Contents</h3><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="fold"><polyline points="6 9 12 15 18 9"></polyline></svg></button><div id="toc-content" class><ul class="overflow"><li class="depth-0"><a href="#proposition" data-for="proposition">Proposition</a></li><li class="depth-1"><a href="#proof" data-for="proof">Proof</a></li><li class="depth-2"><a href="#rightarrow" data-for="rightarrow">\Rightarrow:</a></li><li class="depth-2"><a href="#leftarrow" data-for="leftarrow">\Leftarrow:</a></li><li class="depth-0"><a href="#proposition---convergence-in-topological-space" data-for="proposition---convergence-in-topological-space">Proposition - Convergence in Topological Space</a></li><li class="depth-1"><a href="#proof-1" data-for="proof-1">Proof</a></li><li class="depth-2"><a href="#rightarrow-1" data-for="rightarrow-1">\Rightarrow:</a></li><li class="depth-2"><a href="#leftarrow-1" data-for="leftarrow-1">\Leftarrow:</a></li><li class="depth-1"><a href="#definition" data-for="definition">Definition</a></li><li class="depth-1"><a href="#theorem" data-for="theorem">Theorem</a></li><li class="depth-2"><a href="#examples" data-for="examples">Examples</a></li><li class="depth-0"><a href="#exercises" data-for="exercises">Exercises</a></li><li class="depth-1"><a href="#question-1" data-for="question-1">Question 1</a></li><li class="depth-2"><a href="#claim" data-for="claim">Claim:</a></li><li class="depth-2"><a href="#proof-2" data-for="proof-2">Proof:</a></li><li class="depth-2"><a href="#alternatively" data-for="alternatively">Alternatively:</a></li><li class="depth-1"><a href="#question-2" data-for="question-2">Question 2</a></li><li class="depth-1"><a href="#question-3" data-for="question-3">Question 3</a></li><li class="depth-1"><a href="#question-4" data-for="question-4">Question 4</a></li></ul></div></div></div><footer class><p>Created with <a href="https://quartz.jzhao.xyz/">Quartz v4.4.0</a> © 2025</p><ul><li><a href="https://github.com/jackyzha0/quartz">GitHub</a></li><li><a href="https://discord.gg/cRFFHYye7t">Discord Community</a></li></ul></footer></div></div></body><script type="application/javascript">function c(){let t=this.parentElement;t.classList.toggle("is-collapsed");let l=t.classList.contains("is-collapsed")?this.scrollHeight:t.scrollHeight;t.style.maxHeight=l+"px";let o=t,e=t.parentElement;for(;e;){if(!e.classList.contains("callout"))return;let n=e.classList.contains("is-collapsed")?e.scrollHeight:e.scrollHeight+o.scrollHeight;e.style.maxHeight=n+"px",o=e,e=e.parentElement}}function i(){let t=document.getElementsByClassName("callout is-collapsible");for(let s of t){let l=s.firstElementChild;if(l){l.addEventListener("click",c),window.addCleanup(()=>l.removeEventListener("click",c));let e=s.classList.contains("is-collapsed")?l.scrollHeight:s.scrollHeight;s.style.maxHeight=e+"px"}}}document.addEventListener("nav",i);window.addEventListener("resize",i);
</script><script src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/copy-tex.min.js" type="application/javascript"></script><script type="application/javascript">
const socket = new WebSocket('ws://localhost:3001')
// reload(true) ensures resources like images and scripts are fetched again in firefox
socket.addEventListener('message', () => document.location.reload(true))
</script><script src="../postscript.js" type="module"></script></html>