Exercises 1.1.6.

- (1) Show that $P \Rightarrow Q$ is the same as $Q \Rightarrow P$, which also means that $P \land Q$ is false; a so called *proof by contradiction*. Is $(P \Leftrightarrow Q) \equiv ((P \Rightarrow Q) \land (Q \Rightarrow P))$ a reasonable definition? Show that $P \land Q = P \land Q = P \land Q \Rightarrow P$
- (2) Prove Morgan's laws $(\cup X_i)^c = \cap X_i^c$ and $(\cap X_i)^c = \cup X_i^c$.
- (3) Show that any partition on a set X is of the form X/\sim .
- (4) Show that no prime number is the square of a rational number. Hint: Use the prime number factorization theorem. Can you generalize this result?
- (5) Prove that convergent sequences in \mathbb{Q} are Cauchy. Show that each real number has at most one positive square root.
- (6) Show that the rational numbers are the decimal expansions that are periodic, like $4,567897897897\cdots$ or $0,011111\cdots$. Express $0,32\equiv 0,32000\cdots$ in a binary expansion.
- (7) Show that $f: X \to Y$ is bijective iff (meaning, if and only if) it has an *inverse* map, i.e $f^{-1}: Y \to X$, and show that the inverse is unique. Show that \cong is an equivalence relation on a set of sets. Prove that $|\mathbb{Z}| = |\mathbb{N}|$ and $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ and that $|\cup_{n \in \mathbb{N}} X_n| = |\mathbb{N}|$ if all $|X_n| = |\mathbb{N}|$.
- (8) Use the Axiom of Choice to show that if one has a surjection $X \to Y$, then $|X| \ge |Y|$.
- (9) Show that inverse images respect forming unions and complements. When does inverse images respect single element subsets?