# Definition $$(\cdot | \cdot) : V \times V \to \mathbb{C}$$ > [!info] > $$V \times V \ni (u, v) \mapsto (u | v) \in \mathbb{C}$$ > Such that $(au + bv | w) = a(u | w) + b(v|w)$ > and $\overline{(u | v)} = (v | u)$ > >[!example]- > > $$(w | au + bv) = \overline{(au + bv | w)} = \overline{a(u | w) + b (v | w)} = \bar{a} \overline{(u | w)} + \bar{b} \overline{( v | w)} = \dots$$ > > and $(v | v) \geq 0$ and $(u | u) = 0 \implies u = 0$