- $u + v = v + u$, - $(u+v) + w = u + (v + w)$, - $u + 0 = u$, - $u + (-u) = 0$, - $a (u + v) = a \times u + a \times v$, - $(a + b) \times v = av + bv$, - $a(bv) = (ab) \times v$, - $1 \times v = v$. These can be used for Complex, Real, or Rational vector spaces.