# Definition Let $z = x + iy$. Then its **complex conjugate** is $$\bar{z} := x-iy.$$ # Properties The following hold: 1. $\mid z \mid^2 = z \bar{z}$, 2. $z + \bar{z} = 2 \mathrm{Re} z$, 3. $z - \bar{z} = 2i \mathrm{Im} z$, 4. $\overline{r e^{i \phi}} = r e^{-i \phi}$.