# Definition $$| (u|v) | \leq \| \, u \, \|_{2} \times \| \, v \, \|_{2}$$ $$\| \, u + v \, \|_{2} \leq \| \, u \, \|_{2} + \| \, v \, \|_{2}$$ > [!example] Proof of Cauchy-Schwartz > Insert $a \equiv - \frac{\overline{(u | v)}}{\| \, u \, \|_{2}^2}$ for $u \neq 0$ into > $$f(a) \equiv |a|^2 \times \| \, u \, \|_{2}^2 + \text{Re}(a \times (u | v)) + \| \, v \, \|_{2}^2 = \| \, au + v \, \|_{2}^2 \geq 0$$ > [[QED]]