Exercises 2.5.11.

- (1) A topological space is second countable if it has a countable collection of open subsets generating other open sets as unions of this collection. Show that a subset of a second countable space is second countable in the relative topology. Prove that second countable spaces are separable, and that separable metric spaces are second countable. Conclude that \mathbb{R}^n and any normed space with countable dimension are second countable.
- (2) Show that compact Hausdorff spaces are rigid, in that they have no stronger or weaker compact Hausdorff topologies.
- (3) The Tychonoff cube T is the space $[0,1]^{\mathbb{N}}$ with product topology. Prove that T is a compact Hausdorff space. Show that the formula $d(x,y) = \sum 2^{-n}|x_n y_n|$ for $x = \{x_n\}, y = \{y_n\} \in T$ defines a metric on T that induces the topology on T.
- (4) Consider the equivalence relation \sim on $\mathbb R$ given by $a \sim b$ if $a b \in \mathbb Z$. Show that $\mathbb R/\sim$ with the quotient topology is homeomorphic to the unit circle in the relative topology from $\mathbb C$.